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CHAPTER I

Introduction

One of the primary goals in this dissertation is concerned with the develol)_n('nt

of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling

and design of conformal antennas of arbitrary shape. Both the finite element and

integral equation methods will be first overviewed in this chapter with an emphasis

on recently developed hybrid FE-BI methodologies for antennas, microwave and

millimeter wave applications. The structure of the dissertation is then outlined. We

conclude the chapter with discussions of certain fundamental concepts and methods

in electromagnetics, which are important to this study.

1.1 Overview

The development of simulation techniques for conformal antennas typically mounted

on vehicles is a challenging task. By and large, existing analysis and design meth-

ods are restricted to planar and mostly rectangular patch antennas. These tech-

niques have difficulty in being extended to non-rectangular/non-planar configurations

loaded with dielectrics and comprised of intricate shapes to attain larger bandwidth

and gain performance [1-4]. Moreover, practical antenna designs may also require

a sophisticated feeding structure, such as coaxial cable, microstrip line. stripline.



proxin_itv or al,erlur,, co,,]4e_t circuit nelwork.,.I<, a,_l i_I,.._,,,l _.,l_.,li,,,_ ,,_,'_it,,,l-

are riot easi]\ adaptal,le to nlo&'li,,g lh,'.-v _.truclu,,.-. e>t..ci_,llv i,_ _l_' t'"'""_'"'

of finitely sized <tMecTric loading-. Partial (litt'crciltial _.(lUa_iv,_ I1_I)I]! _cct,,,icim._.

(e.g. finite elemenl and finite difference method_.l niav al>o ('×t..riciic_. ditticultiv-izl

modeling unbouilded field problems, such as _hose found in a,:enlm radiathm aim

scattering. The motivation of this dissertation is therefol'e based on the need To ds.-

velop general-purpose analysis techniques which can accurately simulate ('onformal

antennas of arbitrary shape with diverse feeding schemes. \Vith the rapid growth of

personal cellular GPS and other communication systems, there is an increasing need

for such techniques since even traditional and protruding low frequency anlennas

are being re-designed for conformality and to meet requirements for a host of new

applications [5, 6]. Besides, most development of computational electromagnetics in

this subject can be applied to medical diagnosis and treatment which have shown a

tremendous research and application potential [7, 8].

The complexity of new antennas demands that analysis and design software be de-

veloped based on methodologies that are robust, versatile, and geometrically adapt-

able. Recently' it has been demonstrated that the finite element method when cou-

pled with the more traditional integral equation approach becomes quite attractive

for modeling a wide variety of existing and emerging antenna configurations [9]. The

finite element method is indeed ideal for modeling the interior volume of the an-

tenna structure (multi-layer substrate, finite size dielectric loading, stacked element

design, feed network and cavity volume, etc.) and is one of the most celebrated

analvsis methods in engineering. On the other hand. the boundary integral offers

the most accurate representation of the fields exterior to the antenna. Thus the com-

bination of the finite element and the boundary integral (FE-BI) methods provides



for thehandlinaoftlle_eometricalcoml_h'xitvwithout cunlpr_,llli_inaaccut_,,x. [t_i-

hybrid methodologyappearsto b(' very attracli\_' [oz COllfOrnlalantcilna lll_.i,']ill_.

However.its (h,velopnlentand application to morepractical a1_dcnler_iIh,-t'_llt_'llI_-

presentsuswitt, many theoretical and numericalchallenges,whicl, will t_,cxlci>iv¢'l\

investigatedin the work.

Specifically.meshtermination plays an important role in FENI simulations _nd.

in many cases,the accuracyis subjecl to the performanceof the domain truncation

scheme. For conformal antenna modeling, a boundary integral (BI) equation llas

been employedin this dissertation for terminating the antenna's radiating surface

and this method is theoretically freeof approximation. Thus, a desiredaccuracycan

be achievedwithout fundamental limitations. Antenna configurations of arbitrary

shape can be readily tessellatedusing meshgeneration packagesin the context of

the FE-BI technique. In modelingthe interior regionor the feednetwork,a superior

artificial absorbingmaterial- perfectly matched layer (PML) -- has beenusedto

ensurea minimum impact dueto truncation walls. An intensive study of the PML's

performance has been carried out and the optimal selection of PML parameters has

been designed and employed herewith in shielded structure modeling.

Frequency domain methods provide the necessary information for engineering

design. However, when wideband responses are needed, they can quickly become

expensive compared to time domain techniques. A method, referred to as the asymp-

totic waveform evaluation (AWE;), can be used to alleviate this issue. It has already

been successfully used in VLSI and circuit analysis. In the context of the FEM, we

shall investigate the suitability and validity of AWE for simulating MMIC devices.

One of the important issues in antenna analysis is the feed design. Modeling a

feed using the finite element method is indeed a challenging problem, and a sin>



pliii('d prol,e fe,_d n,,.,<i,_'l fai]_. I<, _ccmat,:lv pv_.,clict l tl,_' iIil,lll ilIIt,(',tatl,,'. ()I_ _it,'

other hand. the numerical svsten_ (all b('cL, n_(' ill-(_)lldil, iom.d wll('ll a f('('(I l_,,lx_,I-k

is modeled without careful consid('rations. In till, <li.-._er_atiolJ xari_m> f_,('(l lla,(],,l-

will he investigated in consideration of accuracy and ef[icienc\. "]-tl(,v ilhclmh' <urn,hi

and vohage gap generators, stripline, microstrip line. coaxial cabh,, al)erl ur(' c_)ul)h'd

microstrip, etc.

In regards to the development and applications of the simulation techniques. _he

test and design benchmark models of particular interest are inicrostrip (rectai_gular

and circular) patch antennas, dual-stacked patch antenna, ring slot antenna, and

cone antenna, etc. ]t is noted that. some of thern are not necessarily planar or

conformal.

Referring to the dissertation structure, we begin with a description of electro-

magnetic fundamentals and then proceed to discuss the boundary conditions, equiv-

alence principle, Dyadic Green's functions and the related theorems. The finite

element method as applied to time-harmonic electromagnetic fields and waves is

subsequently described and the basic FEM equations are derived from both varia-

tional and Galerkin techniques. The derivation is given in algebraic form allowing

the inclusion of general anisotropy. The emphasis of the discussion is on the gen-

eralization of the variational functional and Galerkin techniques when anisotropic

and lossy materials are present. Chapter 3,4,5 and 6 discuss the development of

edge-based FE-BI techniques with significant efficiency improvement for antennas

and feed network modeling. The emphasis in these chapters is on developing novel

methodologies to minimize the required computing resources.

Chapter 7 is devoted to circuit modeling where specialized truncations suited

for guide wave structures are presented. The perfectly matched laver (PML). an



5

anb,olropic aNiticial absorberusedfor nlesb truncalhm, i, inve',_lieal_'t]irl 1,'Illl'- L,I

perfornlanceand applications.

\\ide}_and svslem responses])lompt us to look at lnore c[tichql/ allal\-i_ t_,t,l-

to replacetile current brute force frequency domain anal\sis apl)roaches. ('ltat_I¢'i ,',

discusses a preliminary development of the FEM in connection Wil}l lhe .-\\V[:'.

In the last chapter, we summarize and discuss tile anticipaled future research

work to extend the capability and applications of the robusl FEM deve]opz_enl. A

list of suggested topics is included with specific recommendations.

1.2 Fundamentals of Electromagnetic Theory

Since man5 fundamental concepts and theorems of electromagnetics will be em-

ployed, we will describe the pertinent ones in this section for reference purpose.

This will also ensure consistency' in nomenclature and conventions throughout the

dissertation.

The vector wave equation -- the only partial differential equation (PDE) con-

sidered in this research -- will be first derived from Maxwell equations. Various

boundary conditions will be studied to establish the general mathematical models of

boundary value problems (BVP). The equivalence principle, uniqueness theorem and

the half-space dyadic Green's functions are then briefly; discussed for EM solutions

in radiation and scattering problems.



1.2.1 Maxwell Equations

Tinle harnxoriic NIa×w¢'ll equa_ i,>tl_-of <lifl-_'rci_ial f,,Hl_ ill a lil_¢'at, aIli..,,l t,,l,i, ;,i,ci

uniform I_ledinm aro aixexl t)5 [10]

V×E = -j_'_.H-M, t l.1)

V×H = j.:_.E+J, (1.2)

V'._-E = p, (1.3/

V. .H = pm (1.4/

where E and H are the electric and magnetic field intensity, respectively. _ is the

radian frequency and the factor ea'_t is assumed and suppressed throughout this

dissertation; Mi and J, are the impressed magnetic and electric current, respectively.

to serve as possible sources in the medium under consideration; finally p_ and p_,

denote the electric and magnetic charge density. Both M, and p_ are fictitious and

non-physical quantities, which facilitate the formulation of physical problems when

the equivalence principle is employed. The material tensors _ and _ represent the

permittivity and permeability, respectively, and may be written, in general, as

(11 _712 _13

_= e0L = e0 e21 (22 _23 (1.5)

_31 _32 _33

_11 tA12 _13

_u = #o_ = #o _u21 /_22 /123

F31 P32 F33

with _o and/_o being the free space permittivity and permeability.

(1.6)



The procedure to (h'rixe lhe v(,ctor way(' equation I,t,oitl> I,x t'lillliILalitlC t_It_' _,f

the two fi('ld quanlilies from (l.lt and (1.2}. To do _.¢,. w_. til..I lake" a dot i,v_,tu¢l

of (1.1) with the tensor _-l and then take the curl on I,oth sides cd tl.l! to ol,_ail_

V ×p,l.V ×E=-j_'poV× H-V ×H_ -M, L.7]

Substitution of (1.'2)into (1.7) yields

(--, ) (--,)V" x p,. -v'×g =_2,Uo_o_,..E-j,_',,o.li-K × H, .M,

or

( ) (--,)X-7 × _:_.V ×E -k02_,. .E= -j,_/.t0J,-V × P,. "M, 1.S)

where ko = Wv//2oeo is the free space wave number. The dual of (1.8) is given by

( ) (')V x _-'.V xH -koCh, -H= -jwe0Mi+Vx _, .J, (1.9)

and can be similarly derived starting with (1.2). Equations (1.8) and (1.9) are the

vector wave equations of the desired form.

1.2.2 Boundary Conditions and Boundary Value Problems

Three types of boundary conditions are typically encountered, and in the context

of the finite element method, these boundary conditions must be considered and

carefully treated. In what follows we shall discuss these conditions.

Dirichlet Boundary Condition

Consider two media separated by a surface F whose unit normal _ points from

medium 1 to medium 2. The fields on two sides of the interface satisfy the relation

× (E2 - El) = -Ms (1.10)



where .M, is a h('_iliou_, n_agnetic surface curry'hi an,I E, aild E: alc It,_" <'l_.<_i< I_,'1,i

inside nlediuml aad medium 2. r_'spectivel.v. If nl_'diunl I i:-a l>_'Jt_'ctlv lll_l,,'_i_

conductor 11'.\I('1. then Et vanish,'_ and (1.101 I,_.come, :_ , E, = -M,. "lhc-_ll,_'

magnetic current M_ can either be an impressed source (excilationtor nlav r_,l,t_'-t.I_T

a secondary (induced) current. If mediunl 1 is a perfectly electric conducl_r (Pl(('t.

_:_x E2 also vanishes and thus M_ = 0 on the PE(' surface.

Similarly. for the magnetic field.

x (H2 - H1) = J_ (1.11t

then (1.11) must be rewritten as

where (_-'-V x E) i= 1,2 are evaluated just inside the ith medium approaching
i

the boundary (from the ith medium). If medium 1 is a PEC. then V x El = 0. and

where J, denotes an electric surface current. The PEC surface can support electric

currents, given by _ x H2 = J,, since H1 is zero within the conductor. By duality.

the PMC surface does not support electric currents, i.e. V x H2.

The relations (1.10) and (1.11 ) are inhomogeneous Dirichlet boundary conditions.

They become homogeneous when M_ = 0 and J_ = 0, and in those cases they imply

the tangential field continuity across the dielectric interfaces. Often, J, and M, are

introduced as fictitious currents when applying the equivalence principle (except in

special cases where they are specified a priori). The implication of this issue will be

discussed later in the development.

Neumann and Mixed Boundary Condition

In formulating a physical problem using hybrid finite element methods, we usually

work with either El or H field. If, for instance, we choose El as the working quantity,



(l.l "_} reduces to _ standard Xeunlann boundary colldi_i_lz, l,v wtLictz a ,t,tl-1_,_i_

on the derivative of E at the inlerface is defim'd. l)kt' dual of t l.12* i_, ,.z'i\_'I_ I,',

2 lJ

and this condition is used when working with the H field. Ill many at)t)licatioil_. _hc

single field formulation is often desired since the system size may be kept millimum

in this manner. However. it is already seen that the single field formulation implios

use of the second order conditions referred to as nat_lral conditiom_, l:ortunalelv, it

is rather straightforward to impose this type of conditions in regard to finite element

simulations.

As for mixed boundary conditions, an example is the resistive surface where the

electric and magnetic fields satisfy the condition

× _ × E+ R_ × [H] +=0 (1.14)h

with R being the effective resistivity of the surface and [H] += H + - H- the field

difference above and below the surface. This is a typical mixed (third type) homo-

geneous boundary condition. Another example of a mixed condition occurs in trans-

mission line problem (e.g. a coax cable, or other guided wave structures), where the

electric and magnetic fields at a cross-section of the line are given by

E = Eie -_ + FEiC '_ (1.15)

H = Hie -'_ - rHie "_ (1.16)

and

h x E i = -ZH i (1.17)

where i_ = -3. and (E i, H i) are the incoming fields before encountering a discontinuity

or load along the transmission line. Also, Z is the wave impedance associated with



llJ

the _ransrnissionline me,dr of the _uidewav_,_.Iructur,'. i_tit_ii_ati,,..:'l troIl, 1.1"_i

and (1.1(;) in view of I 1.17i yields._h_'relatioll

;t _: E - ZH = 2b _: E',-': 1.1,',t

which is an example of inhomogeneous mixed (third type) 1,oundarv condition. Thi.-

becomes apparent when H is expressed in terms of lhe derivalive (curl) of E. 1 and

therefore the left hand side contains both differentiated and undifferentiated quan-

tities. (In this case. the right hand side is t, suallv considered as a known functioil.)

The mixed boundary condition (1.18) is found very useful when applying the FE.XI to

guided wave structures for truncation and excitation simultaneously. It is basically

a form of absorbing boundary condition (ABC).

1.2.3 Uniqueness Theorem and Equivalence Principle

The uniqueness theorem and the equivalence principle will be explicitly" or implic-

itly applied to this work when dealing with integral equations to terminate the FEM

mesh and when evaluating the far-field pattern. Together with dyadic Green's func-

tions, it becomes convenient to apply these concepts to construct integral equations

associated with various geometries in radiation and scattering problems. It is our

intent to discuss the theorem and the principle (without proof) for later applications.

Uniqueness Theorem

Partial differential equations (PDE) can be solved using various approaches and

the corresponding results can also be represented in numerous forms given certain

boundary conditions. Moreover, many' (boundary', initial, natural, essential, radi-

ation, etc.) conditions of PDE models can be extracted from the mathematical

1Care must be taken when a curl operation is performed at a boundary" discontinuity. It should
be appropriate to evaluate the field derivative at a distance from a discontinuity and they let the
distance tend to zero.
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si,ecification._of well (letin('d l_lly.'.i(altm,l,h'n_.. lh(' (tm'_.lit,tl 1tL_'llati-.,'- a- _, I,_,x_

to relate the solulion_ and how n_anv(,J_dition_.arc ...uilicic_ _, ;,c[_i,.v_. tl_' "cor-

rect" solution. Uniqueness theorenls offer lh(' aliswer 10 thi- (iUi'SliOll.._i),'citicallv ii_

electromagnetics, the E.il ,,.olutiom._ ore uniquely dete r'mi,ed b!l the .,¢,urce., II_ a 91t'_ J_

region plus the tangential componenl._ of the electric field o12 bour_dari¢.,, or l_lu., th,

tangential components of the magnetic field on bouT_daries. 2

Equivalence Principle

From the uniqueness theorem, an EM problem can be uniquely solved if t t_¢,

tangential (either the electric or magnetic) field component at the boundary is l)r¢ ,-

scribed. In this work, of interest is an EM problem where a dielectric inhomogeneous

region exists in the presence of a large PEC platform, probably coated with a diehw-

tric slab. The typical geometries are shown in fig. 1.1. where we consider the upper

half space to be the exterior region and the cavity the interior region.

In EM analysis, the fields in the exterior region can be represented in integral

form containing the equivalent current sources. From (1.10) or (1.11) the tangen-

tial electric or magnetic field near the aperture (or the discontinuity region) may be

equivalently expressed in terms of the surface currents Mi and/or Ji. By 'equiva-

lence', we demand the field distribution remain the same when the fictitious surface

currents are used to replace the interior region (cavity volume). It can be shown

through the uniqueness theorem that this substitution indeed ensures an identical

EM field distribution in the exterior region.

When the interior region is excluded from consideration, the current sources in

(1.10) and (1.11) may be arbitrarily chosen leading to an infinite number of choices

for the equivalent currents. However, in our work the field behavior in the interior

2See the proof in reference [10].



equivalent currents

cavity

(a)

ground plane

equivalent currents

\

cavity

l
coated ground plane

(b)

Figure 1.1" (a) Recessed cavity in a PEC ground plane. (b) Recessed cavity in a

dielectricallv coated PEC ground plane.
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regi(m is a]_o need_,(l, and m(,sl spe(iti('a]ly, t lJ_+ct,lzlflii_,.2+t,f lh,. fi,'l,l_ ilJ th,, iJltl,'I a_l,l

outer cavity regions i._ d(,sired. It i, t]l('i'('for_' (ottw'niCllt to .,,,,]t,(t t]w tt,ta] tail_'lltial

electric or magnetic field Io specify the e(luixalent currellts a.,,

M+=E × i_ an(l ,],= ;, >,,H. i1.191

This choice implies the assumption of zero interior fields when the ('xterior regiott

is considered, and zero exterior fields when the interior region is nee(le(t. Fig. (1.2)

and (1.3) illustrate the details of applying the principle, where the fict it ious currents

affect the region of interest (ROI) only with zero EM fields outside of the ROI. It is

observed that this choice of equivalent currents permits a convenient interior/exterior

system coupling for the "total field formulation" in hybrid FEM applications.

1.2.4 Integral Equation and Dyadic Green's Function

The Dyadic Green's functions are particularly convenient for constructing integral

equations in the presence of certain canonical platforms. For a planar structure, the

platform of particular interest is the PEC infinite ground plane in which a cavity is

recessed with dielectric loading or absorption depending on applications.

The choice of the dyadic Green's function varies depending on the FEM formu-

lations. For the electric field formulation, we are seeking an appropriate integral

representation to find the magnetic field in the exterior region using the information

on or near the region of the aperture. To this end, let us start with the structure

containing a possible protrusion as shown in fig. 1.4, where the equivalence princi-

ple has been used on the outer contours of the structures t.o obtain the equivalent

currents.

Consider the wave equation

V x V × G(r,r')- ..'2poeoG(r,r')= -I_5(r- r') (1.20)
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equivalent currents

(E,H)=(O,O)

ground plane

Region of Interest (ROI): Exterior

(a)

equivalent currents

(E,H)=(O,O)

cavity

Region of Interest (ROI): Interior

(b)

Figure 1.2: Illustrations of equivalence principle when applied to the structure shown

in fig. 1.1a.
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equivalent currents

(E,H)=(O,O) I

ground plane

Region of Interest (ROI): Exterior

(a)

equivalent currents

(E,H)=(O,O)

cavity

Region of Interest (ROI): Interior

(b)

Figure 1.3: Illustrations of equivalence principle when applied to the structure shown

in fig. 1.lb.



Me Je

(a)

Me J e

(b)

Figure 1.4 Examples of protruding configurations (a) on a planar platform (b) on a

curved platform in consideration of tile equivalence principle.

where G is the dyadic Green's function G in association with (1.9) (assuming M, =

0), and i is the idem factor defined as i = 2.? + _)!) + 55. Also. note the identity

fff {p.(v v ×P).Q}X ×

= - fla. [v × v × _+ (v × P) × q--]as' (1.21)

and upon setting P = H and Q = G, we get

fff {H. (V × × - (V × × H)-G}
V N) V dV

=-J_h.[H×V×g+(V×H)×_ dX (1.2"))

From (1.9) and (1.20), the left hand side (LHS) of (1.22) reduces to

LHS = -H(r') - [[[ V" x J. G(rfr')dV
JJJ_

and the right hand side can be rearranged as

RHS : [[ H. [fi ×VxG----] +(V ×H)-[;, × G----]dS
JJS
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|':quating the IAtS and R|lS vield._

//S -H(r) = - V' xJ.G(r'irtdl"
"t

tf

H (H. [5 x V'>, G'--; + (V', Hi. ii, ". G-_j I d."' tl.2:_,
J ,) S !

where r and r' have been interchanged without loss of generality..-ks can be realized.

_"' is the volume containing the distributed electric currenl source and S' is i])(,

surface enclosing the entire upper half space.

To eliminate the curl on .1. we use the dyadic identity.

V. (J x G) =(V xJ)-G-J. (V x G)

and the divergence theorem to get

where the Sommerfeld radiation condition was invoked to eliminate the integral at

infinity. Therefore, S' is only over the outer surface of the body.

It remains to represent the surface integrals in terms of the electric field near the

cavity since this field is typically the computable quantity. This is carried out bv

inserting (1.24) into (1.23), yielding

i/iv -H(r) = - J.(V'xG)dV'
I

-SL,{H'(fixV'xG)+(V'xH-J)'(_xG)} dS'

/iS,, -- - J-(V'xG)dV'
I

- if {H'(h xV'xG)+j_0E-(fi xG)} dS' (1.25)
JTS I

where the Maxwell equation (1.2) has been used. It should be remarked that the

above field representation is general, i.e. not restrictive to planar or conformal cases.



For iil_.talkce, in tho im'_.ence of a P["(' platf.r1_t. 11.2-,! i.. vali¢l t_,t I_I_,trll¢li,_ _,,_

tiguration.- as shown in fig. 1.4. Ix1 tll(':¢' ca_.(,>, tile surl'ac(, ii11(',.zrati_,ll- al¢. c,rii(.(t

out over the platform plus the outer ('OlllOlli'> of [tit' >,lt'/It'l IlI'l'>.

The field representation (1.25) shall l,e examined ai_d (ontt)arod for t't)lll't)l'illltl

and protruding structures. To this end. we rewrite lhe surface i_ltegral as

h,t_,:_ = -/t, { (_ x-G)T'(i' x H)d'q' + J-_V × (V' >'-G)T(i_ > E)} d'q'_:t'o

= Vx/Z {H.(i, xG)dS', _-'t'oJ(h ×E).(V'×-G)} dS' (1.2l;)

where T denotes a transpose operation of the dyadic and the integral in the las_

step is proportional to the electric field. If G(rlr' ) is the electric dyadic Green's

function of the first kind defined as _ x G = 0. the first term in the integrand

of (1.26) vanishes on the platform, provided S' is coincident with the platform. For

dielectric protrusion, this term reduces to the integration only over the outer contour

not conformal to the platform. An alternative is to define an electric dyadic Green's

function which satisfies the condition fix (V" x _)r = 0. As can be seen. this

definition of the Green's function equivalently leads to the same vanishing term in

(1.26). G is referred to as the dyadic Green's function of first kind. The equivalence

of both definitions can be proved from the symmetry properties of the dyadic Green's

functions [11].

For a planar PEC platform, G reduces to

G(rlr') = Go(rtr')- Go(rlr ) + (1.27)

where Go is the free space Green's function given by

e-ik01r-r'l
Go(rlr') -

4 lr- r'l



1!5

and

1 ) . ,G-o(rlr') = I + _-_-_- (,o(r,r t

Inserting (1.26) and (1.27)into (1.25). we obtaill

H(r) = H"_(r) + H"f(r) + 2jL'}0// Go(r[r') - (;_ _ E)d.<" (1.2S)
J j.¢ ¢

This is the desired form of tile magnetic field representation used to eslablish lh(-

boundary integral equation for a planar platform.



CHAPTER II

Finite Element Analysis in Electromagnetics

The finite element method (FEM) has been applied to electromagnetics (EM)

since several decades ago [12]. Especially ill the late eighties and early nineties,

it is observed that the publication volume associated with the FEM in electrical

engineering grew in a fairly rapid pace [13]. This is primarily because electromag-

netic problems in engineering designs become increasingly complex and analytical

approaches or other numerical techniques no longer meet practical needs. With its

numerous attractive features over other numerical techniques, the FEM has been

extensively investigated and exploited for various EM applications [13].

This chapter is organized as follows. Section 1 and 2 describe the theoretical

formulations to construct the FEM equations. These are usually considered the

indispensable fundamentals of the technique, even though some interesting issues

associated with these basics are still in development stage, especially in terms of nu-

merical implementation. Of interest in this context is the discussion of the variational

functional and Galerkin's techniques when applied to general anisotropic and lossv

electromagnetic problems. This topic is one of the least studied and documented

in the literature related to computational etectromagnetics. Anisotropic materials

have been used for domain truncations (refer to Chapter 7) and therefore the general

2O
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veclor or _ensor form will be used whencw'r p_,:>il,t_, i1_ It., 1_.cc>-arv _h.ri_._i,,_-

for the t-E3I. With this type' of formulation>, i>_,tro[,ic _x,t¢,rll, m,tv },. r,',_,_r_t,',l a>

sp('cial ('ascs.

The chapter is concluded with the discussion of the physical (]uanliT h,_ l_)r antt'tlm_

analysis in association with the computation of e]('ctromagnetic fi('lds. Th(' formulas

given in this context require minimum amount of effort fox computations.

2.1 Functional Formulation

The FEM was first developed with the aid of functional analysis. Tradition-

ally, many standard boundary value problems (BVP) encountered in practice can be

equivalently related to the extremization of a certain variational functional. With

the Rayleigh-Ritz procedure to project a continuous function space onto a discrete

finite expansion space, the variational functional method can be used to soh'e those

physical problems and therefore becomes one of the two important approaches t.o

formulate the FEM. A functional version of the FEM for the vector wave equations

(1.S) or (1.9) is discussed in this section, which can readily incorporate boundary

conditions, sources, resistive cards and other constraints into the formulation. It is

regarded as a natural, convenient and sometimes physically meaningful approach.

Furthermore, the functional may represent a true physical quantity (e.g. in low

frequency, power transmission applications) and hence this formulation provides a

feature of merit for its evaluation. Also, as can be seen in this chapter, the varia-

tional method in general non-self-adjoint cases may be rigorously treated to result

in a final symmetric system, a subset of which is identical to that obtained from

Galerkin's technique. Last, but not the least, the variational functional formulation

can be used to validate the expressions based on Galerkin's method.
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('om.ider a tyifica] radiati_m or _catt('ri.g pr.[,h'n_-l.,wn ill ll_. 2. I. _l_'I,' tl..

Z

Radiating element
Ground

X

plane

._ Y

Figure 2.1: Illustration of a typical conformal antelma configuration.

radiating elements (or array) are enclosed in a region Q. The platform surrounding

the radiation/scattering geometry can be a planar ground plane, certain canonical

shape (cylinder/sphere), or even a doubly curved surface in which case the Green's

function is not available. In Q, electromagnetic fields satis_" the wave equation (1.8)

or (1.9), which can be concisely described using a linear operator L: given by

Z:O = K; (2.1)

where (I) denotes the field E or H, and

_--1 /£ = V x/a T • Vx - (k02_-) for electric field (2.2)

( =-1 )/; = V x _ .Vx - (ko2_ .) for magnetic field (2.3)

Ki is the source term associated with the impressed electric and magnetic currents

and may be explicitly given by

K, =-j_'poJ,-V× (_-1. Mi)

K, = -j_'_oMi + V × % . J,

for electric field (2.4)

for magnetic field (2.5)



2:1

As already menliolu'd. £ is a linear opera_or arid ore' cat_ readily _ll_,x_ _ti,T t,,r

sxnlmotric diolectric lensorb _ an_l ?. the perlinem tuxlc_ional of lhc t,ri_itml t'[)li

has tit(' form

1
.T(¢) = 7_ < 0-£¢ > - < qb.K, > (2.(;)

where the inner product <. > is defined as

< A.B >=fnA.B'dI

(with B" being the complex conjugate of B) for lossless media, or more generally as

<A,B >=fnA-BdI:
('_,.s)

for both lossless and lossv media.

The equivalent variational problem can now be stated as the extremization of the

functional (2.6) in conjunction with the essential boundary conditions (e.g. Dirich-

let BC's). Specifically, the boundary value problem is equivalent to the following

variational model

= o
(2.9)

Essential Boundary Conditions

Because the effect of complex materials on the resultant, system is of primary

interest to us, we restrict most of our discussions in this chapter to homogeneous

Dirichlet boundary conditions unless otherwise specified. Therefore, the variational

approach of (2.9) ensures a symmetric numerical system. This is significant since

many physical problems retain a certain symmetry property and the corresponding

mathematical models should therefore reflect this property. Moreover. the symmetry

of a numerical system is always desirable since it leads to more efficient solution and

less storage requirements.
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"lh(' ,,xist('n('vof th(" fulJ('tional (2.(;) re(luir_.>tl,. _,i,rralor /.." I,_...,// ,l,.!:,,:,:. ,

proper_y usually defined to sat isf',

< £(1). _ >=< (I). £_ > ,2.1()b

where (I) and qJ represent any two admissible functions. If (2.10) holds, ll()t o111\

does the numerical system derived from the funclional (2.(;) remain SVlnlm,tri(. llle

minimization/maximization becomes physically meaningful.

Of most concern is the situation where the partial differential operalor of a svslenl

is no longer self-adjoint. ),lathematicallv there exists no such a l_alural functional in

the case similar to (2.6). A typical example is the presence of a lossv and anisotropic

medium, whose dielectric material tensors are not symmetric or Hermilia,. and this

type of problems is more often seen nowadays. The development of finite element

methods for those problems is still at an early' stage because it involves numerous

challenges.

Traditionally, these physical problems were fictitiously' simplified and dealt with

using available numerical approaches. Konrad [14] first tried to formulate a 3-D FEM

with three vector components to represent electromagnetic fields in anisotropic but

loss-free media. The tensors were therefore assumed to be Hermitian in his study'.

A few years later in 1980's, the number of publications in this subject increased

typically with applications to waveguide structures. Unfortunately, the variational

approaches reported by different authors during that period consistently led to non-

standard and non-Hermitian eigenvalue systems (even with the aid of an adjoint

system [15, 16]). Even worse, the numerical systems derived in this manner were

usually doubled in size. As indicated in [17]. when a non-standard eigenvalue system

was manipulated to reduce to the standard form, the size of the system was doubled
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again. Similar reportswer_'al_,_('enin Inlet pal_'r>!l_ 231 for llJct_r_,!,lq'lJ_-_,l _,_'

propagation inside anisotropic media..X_, radia_ioll amt ,calleriIl- aIlalv_i- tla- I.','i,

reporled in ibis context.

In what follows, we generalize 1.he FE.M formulation Io lossv alld anis_trotm

electromagnetic problems. Specifically. we show lhal lwo differem nwlhods, of,' wil Ii

the aid of an adjoint auxiliary system and the other with the Lagrange nlull iplier, ca_

be used to construct the pertinent functional. Galel'kin's melhod is thell col_ll_a1,,d

to these two variational techniques.

2.1.1 Pertinent Functional for Lossy/Anisotropic Media -- I

As is known, the natural variational functiona] no longer exists for non-Hermit ian

operators since no matter what definition is given for inner products (see (2.7) or

(2.8)), one cannot obtain a self-adjoint operator necessary for 71alural functional

design. In these cases, we consider a generalized functional

_-=< £qb,_ > -- < O, Ka > - < k0,K > (2.11

where • is the unknown solution function of the original PDE problem and K Is

the right-hand-side function as in (2.1). Similarly, q_ is the solution function of the

adjoint PDE such that

/;_ = K_ (2.12)

where £_ can be derived from

< £O,k_ >=< ¢,,£,qJ > (2.1:3)

with £ -¢ £_.

It should be remarked that the functional (2.11) reduces to (2.6) (except for a

possible constant coefficient) if £ is self-adjoint. Also. the original PDE and its
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_1(ljoilllCOIIIITf'II,aI[(_.I_P ('_I!I)('l('(t,V('l('d|[|Ft,Holl|h_'\iLliil|it,l_,1][_It,_X'----\viIll

respecl Io the functions _ and qJ. resp_,ctixcly ql},,. >iillph, d,'ri',ati_,l, i- t,II,ill,._l

here). .-kfler discretizalion is carrh,d oul. lh,. [iIlal nunwrica] >x>luIl_ i> >\l_lIllctTic.

This can be shown as follows. Let

(I:) = Z.r,V,. _ = Z yjVj ('_.l-l)

, j

where V, is the basis function used for both unknown function., and .r,..tt, are the

corresponding expansion coefficient s. Insert ing (2.1 -I ) into (2.11 ) yi,'lds

t,l',)
i a i a

Upon performing the differentiation with respect to x, and Yj individually, we get

the two decoupled systems of linear equations

(0:)(:)(,)= (2.16)
Qy K _

where the matrices Q_, Q_ and the column vectors K _. K _ are given by

O_ = <LIV3.V, >
._-- 13

Q_ = < Z:V,,V_ >

K_ = <Vi, K>

Ky, = <Vi,K.>

In general, "-'uOx# Ox_.,,. Q_, ._ O_.....,,and Oz..,.,,7_ O_a. However. OT./ = QYi = (O,y)r.

These relations indicate a loss of symmetry of the original problem, but the symmetry

holds for the overall system!

The storage requirement is a function of :¥/2. where N is the dimension of (2.16).

Even though there is an auxiliary' system needed to complete the analysis, in practice

this system does not require storage.



2.1.2 Pertinent Functional For Lossy/Anisotropic NIedia-- II

.-\na]ternatixc lo usingan ad.i_fi_)Ts\'stenJi_.I_, emph,y ll_' l.a_ratJecll_l]_il,li_'I

lechniquein conslrucling the pertinent functional. Tim l.a,.,rallgc n_ultit,licr i> i>u,ll\

used to incorporate additional constraints to a system. "lo i[luslxalc l]_c lcc[llliqm'.

consider the same PDE model as described in (2.1). and we firsl rmvrilc il as

£qb __ K, = 0 (2.17)

Next. we assume an expansion space where the solution is defined and solxcd. -l'he

unknown function q) and the multiplier function A are expanded in the same space.

If (2.17) is regarded as a "constraint". we try to add the constraint to a "'null'" system

and get

Y(l,, A) =< A, £¢ - K, > (2.18)

This functional is now used to formulate the FEM. As described above, on applying

the Rayleigh-Ritz procedure to both _5 and A using the same set of basis functions.

viz.

we obtain

i j

(2.2o)

Carrying out differentiation with respect to xi and 5'j, individually, yields

(2.21)

where Or = OU. as in (2.16). \Ve observe that (2.21) is similar to (2.16) with Iwo

decoupled subsystems of the same size. The properties of the subsystems are also
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sinlilar Io lho_e in (2.1_;i. \Vc further ob_cv\_, tha_ tile l.a,_'ranm' ii_ullil,li,._ _,,, t_l_i_t/,.

may t,e regarded as a special ca_' I¢, 12.11! wild're ;1 la,l_,,_,_'l,'_,tl- a,li,,iI_l t'l)tl i>

now virtually assumed (i.e. K, = 0). .-\gain. il sh¢,lltd I,_, leI_latkc_t tidal ul,'ll a

self-adjoint problem is considered, the above fornmlal iol_: ([_oI [1 l tie adjoi,1 -Wl,'_ll

approach and the Lagrange multiplier technique) will result in a svmlnetric svsl_'_l

and the auxiliary subsystem becomes either redundant (for adjoin_ atq)roac]_)oi ,ill-

necessary (for the multiplier technique). In the later case. the nmltil)li¢,r talk ),'

considered identical to the unknown ftmction • expanded using the sanw [Jasi, t_J_c-

tions. This results in an interesting coincidence with Galerkin technique ¢h'scril,ed

next.

2.2 Galerkin Formulation

Galerkin's method is now considered to formulate the finite element method. Tra-

ditionally. Galerkin's technique used in conjunction with integral equation emph)ys

the same testing and expansion functions to obtain asvmmetric dense numerical

system. However, in the case of the FEM, Galerkin's method does not always lead

to asvmmetric system. Apart from boundary conditions, the linear operator of a

PDE problem determines the symmetry feature of the resulting system.

Also, unlike the variational approach, Galerkin's method solves the weighted PDE

by a testing process as

< q/,/Z_ >=< _,Ki > (2.22)

where • and _ are both defined in the same function space. Specifically. in Galerkin's

method one seeks the solution for the unknown function • which satisfies certain

prescribed constraints and (2.22), with the aid of another arbitrarily chosen function

q_.
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Similarly Io tim variational approach. 1}_(' t{avh,i,..,h t{ii:., tm>_cdur,'z_l,_\ _l-,, t,,,

used to project the contilmous space onto a tini_e discr(qc ,-cparal,h' Ililtwrl -1,a_,'.

The malhematical problem is thcJ_ rephrased T(, seek a di:cze1¢, _t_lulio_J sol u ij_,.,,

entries are the coefticients of the expansion. "lhe testing funclion qJ IllU.';I. O[ ('t)Ul'SC.

be defined in the same discrete space to ensure that the original PI)E is solved with

proper boundary conditions.

It is obvious that if the linear operator £ is self-adjoint, the choice of the _esting

function _ = • results in a symmetric numerical svstem. Otherwise. no mailer how

the inner product is defined, the final discrete system in general does nol exhibit

symmetry property.

We observe that Galerkin's method can usually be applied to any linear operators

even when the corresponding natural functional does not exist. Also in the general

cases (as considered when describing the functional approach). Galerkin's method

leads to the same numerical system as the desired portion in (2.16) and (2.21). This

can be demonstrated as follows. Inserting (2.14) into (2.22), we readily obtain

or

E E x,yj < Vj,£V, >= E Yi < Vj,K, >
j J

}

As assumed, • is an arbitrary function. Thus the term in the curl3' bracket should

vanish, yielding

Q_x = K" (2.24)

which is exactly the same as the subsystem derived from the variational approach.



II i_ holed that if o1,e cho-_' the Lacran_' 1_l_]tii,lh'r,in I},_, variati<,_,a', ,_I,],T ,_,<lJ

as the testing function qJ. the .,,a_¢. mlmerica[ >v_.len_ would r¢,._ll. .\_La]_¢ ,,llx

though, the entire system is twi(¢, the size of ll,al derived \ia (.;ah'lkill'_ lll,'T[a,,l

This is due to the fundamental difference of the two lechlLiques, l¢¢.¢aidh,>>, a,

expected, the obtained numerical systems of interest are virt uallv idenlical!

2.3 Total Field and Scattered Field Formulations

In this section, we focus on a general scattering problem as illuslrated in tig. 2.2.

where a perfectly conducting electric (PEC) body is coaled with a dielectric laver

whose relative permeability and permittivity are /_d and _d. respectively. (Note that

f2t 

_d: dielectric coated region (_d,_d)

_:-: free space (_l = P/ = 1)

_: absorbing layer (_,_)

Fp: boundary of the PEC body

Fd: boundary of the dielectric coating and free space region

F/: boundary of the absorber and free space region

F0" PEC boundary of the outer absorber

Figure 2.2: Illustration of a scattering problem setup for scattered field formulation.

for the purpose of generality, the medium is assumed anisotropic.)

The situation with absorbing boundary conditions for truncating the FE.M do-

main has been analyzed before (see e.g. [24] or [25]). However. two issues associated
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with this type ofl_roblem. _ have no_ bee_l carefully addr_>.od ill tI.'lil,'raturc. ()lu'

of them is the equivalence betweeIL the variational alld II_c Gah'rkil_'s nwll_,d wt_,'l_

the scattered field is used as the _orking variabh', l'roof of lhi., equivalc_l('c ca_ 1,,,

tedious and cumbersome but it is nevertheless an hnportanl issue, lnforlunalvlx.

one is used to assuming that these two formulations are equivalenl wilholll proof.

Another issue relates to the recently introduced perfectly ma_ched absorbh_g male-

riM. As it turns out. there are several advantages to use artificial absorbing materials.

including accuracy control, conformalitv, ease of boundary treatment, etc. tlowever.

their inclusion introduces additional artificial conditions inside the absorber laver

and care must be taken when those conditions are enforced in the FEM formulation.

Moreover, although a metal-backed absorber layer simplifies the FEM implementa-

tion, the multilayered FEM region contains high inhomogeneity, which again requires

a careful presentation of the formulation. To this end, we extend our theoretical dis-

cussions on the FEM to scattered field representations, where the treatment of the

boundary and transition conditions will also be described.

2.3.1 Scattered/Incident Fields and Boundary Conditions

Referring to fig. 2.2, we begin with the wave equation in terms of H (the E

formulation may be readily handled by duality). To proceed with Galerkin's method,

we first write H t°t as

H *°* = H _t + H mc (225)

where H *_=t and H i'_¢ are the scattered and incident field, respectively. Next. weight-

ing the source free wave equation with the testing function V yields

L{:'V-Vxe_ .VxH-k02_.H df_=0 (2.26)



with the derivatioi_ of the weak f_,rmwart, (,(ittatit)tt. it i> tlt'(t,s,,_trx it, itl_r_,(lu_,'

certain constraints on the scatter(,_t a11ct ill('i(lerll ti(,](ls wilhilk .Q _md c)n t]_(" })()_Jt.(t,_r_.

First. since the incident field is _ol allowed to pass through tl_(' absort_('r lav('r a,,

well as the metal back wall F0, we note that

HSCa _Ht°t ( r ) = H *e=t

with the incidem field satisfying

r E .Qd + -Qj

r E otherwise

(2.27)

{ =-' H =0 +V x e_ .9"x (2.28)
'k t :_ 0 r E otherwise

It is thus evident that the scattered field satisfies the homogeneous wave equation in

regions _ + fli and the inhomogeneous wave equation in _a.

The boundary conditions on H *¢_ can be readily derived by consistently applying

the field decomposition (2.25). Note that in accordance with (2.27), the electric field

is likewise decomposed as

E *or = E _o_ + E i'_ (2._9)

However, one should be cautioned that E i_ and H in_ do not satisfy Maxwell equa-

tions in the dielectric region. That is,

j_oeoE inc # V x H i"_ r e fie (2.30)

which conflicts with what one would intuitively assume. Conventionally, the incident

field is assumed to exist in the dielectrically coated region f_d as if there was no

dielectric there. After a quick glance, one would immediately arrive at a conclusion

that (2.30) is against Maxwell theory. In reality, it can be proved thai if E ''_' and



33

H'": ir)(leedsatisfied Maxwell equatior_._in .(),.,,.a cor)/zadiclo)v t)ouzl(larvc_)_lditi_)r_

would ]rnmediatelv result. This (aJ) be seen I)v taking a el)r] _,p('raIion _)zl I)_))1) >i(h,-

of (2.2.5). In view of (2.29) and ._laxwe]l equations in di(,h,ctric nwdia, w(, would Ilav_,

Imposing the condition of total field tangential continuity at the boundary I'_ would

yield

x _.VxH Ir.+-_f 'Vx It; =0 ....

which is a homogeneous Neumann boundary condition. However. if we start with

(2.27), upon taking the curl operation and imposing the condition of total field

tangential continuity at the boundary Fa, we get

which is an inhomogeneous Neumann boundary condition.

This inconsistency is because (2.32) was derived on the basis of the decomposi-

tion (2.29) and the assumption that the incident field within dielectric regions also

satisfies Maxwell equations. However, the decomposition (2.29) is artificial and it

is therefore necessary to keep in mind that only (2.27) holds true when deriving

boundary conditions.

As a rule of thumb, an appropriate interpretation of the phenomenon should read:

the incident field inside dielectric media ezisted in the same fashion as i7_ fre_ spac_

as if the free space was replaced with the media. Mathematically, this implies the

condition

• inc =-1 Hinc3_'_oE = ed • V x r E ft_ (2.34)



('onsistentlv one can derive the other bouI_dar_ comtition, r_.quirvd fl,l _1,, t'l_.kl

formulalion following tile same procedure. "l-hey arc cla._siticd as l)irhllhq alict N ,ll-

mann conditions as follows.

• Dirichlet Conditions

Boundaries

Fp

Fe

F/

Fo

('onditions

i_ x H _¢_' = K: - f_ x H ''_ (K_ unknown cmrenl)

× {w_°'l+- I-V_°'l_} = o

× {w_o'l+_ w_o,l_} = -;, ×n,_-

h × H *_=t = K] (K, unknown current)

• Neumann Conditions

Boundaries

lPp

Fa

Fj

Fo

Conditions

×

fix

fix

fix

=-1 HSCat =-1 Hinte4 .Vx =-fixe a .Vx

i+ 4+{ } =-,e-(1. V x H "_' -h x q. .V x

G .V x =fi xej .V x

=-1 H,cat% .VX =0

2.3.2

where {} + denotes {} ]+-{} _ and e_ and H *_=' should take the values at

positive and negative sides of a specific boundary.

Galerkin's Method

Returning to (2.26) and in view of the vector identity

A.V xB=(V xA).B-V-(A xB) (2.35)

and the divergence theorem, we obtain the corresponding weak form wave equation

Intd + Int/+ Int_ = 0 (2.36)
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wherc

Iilt4 -- j_ [_- >: _r =-l.(,j ._--, (H '-_ + H'"
d

+ V. b o x _e .V >:H d.';'+ V
p d

(:, )+ V. [_1 x t e ._" × H scat d'2;
d

I d

I (=-' I.+ V" _2 x _I " _': x H sc°t d.'_'
!

Into = VxV.% .V x df_+

i (:' )+ V. fi3 x % -_" x H "_* dS
0

with rio, ill. fi2

-/<_V-_..IH' :'-H"

; =-' H .... )

=_|V. -ill × C/

V- -i_2 x (_

,/(_.)

(2.37)

• T × H ''_'_) d.N'

(2.3S)

• V x H '__'') ds'

(2.:3<,))

and fia being the unit normals at the boundaries F v, Fa, Ff and F0.

respectively. They all point away from the center of the PEC body (i.e. outwards).

Invoking the boundary conditions as tabulated above, we observe that the surface

integrals on Fv in (2.37) and on F0 in (2.39) vanish. Also, the sum of the surface

integrals on Ff in (2.38) and (2.39) reduces to

- V.fi2 xef .Vx dS (2.40)
I

Similarly, the sum of the surface integrals (involving H sc_t) on Fd in (2.37) and (2.38)

becomes

d

Note that both integrals (2.40) and (2.41) will not contribute to the system, but to

the excitation on the right hand side. Of course, the excitation term (2.41) would

disappear if the permitivity is continuous across the boundary Fd. By duality, for

an electric field formulation, a term similar to (2.41) will appear for discontinuous
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pern,eabililv. ItLi> observation doe_ m_t h_hl for 12.-|(_,. w}lictJ ari,t,-tr, ml Ill,, i_llL,'I-

enl incidenl field definition on the two sides of th,. t,oul,(larv I,. a> nlatl,,'llla_icall\

shown in (2.27). Furthermore. the second lern_ il_ (2.-11) will 1,. cains'Ileal oul wiltl

the inlegral on Ve involving H '_: in (2.37). After a >inlph' llmnilmlaliolk. _hc tiltal

system reduces to

= .... /,.0V. _7. H ''_"
d

- V.fil xe/ .Vx dS+ V._72 x(/ .V x (
d I

where ?_ is again the relative permittivity with respect to the specific region. This

is the desired weak form of the wave equation, and a similar equation was obtained

in [24] using the functional formulation for isotropic media.

2.3.3 Variational Method

It is now of interest to employ the functional formulation to obtain the equation

corresponding to (2.42). To this end, it is intuitive to begin with the total field

representation and use the functional

( :, )1 V×H.% .V×H-k0_H._ .H dQ (2.43)
_'(H) = ,_ .+n1+a.

where, as before, _ and _ denote the corresponding relative permittivity and per-

mebility, respectively. Also similar to Galerkin's method, one would now logically

proceed with the field decompostion H = H scat + Hinc and express the functional

in terms of the scattered field. It is unfortunate that this approach will result in a

different form of linear system than (2.42) and the detailed mathematical proof is

presented in Appendix D.
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The db,crepancy arises fronl _h(" a>_.uml)_iolk of the" fu_lcT h,tlaI _2. t:_ *. xvi_h t_ i- I_,_

a valid expre.,sion why. the corresl_,ndin _ PI)E tq)erator i_-no l_)_le_'r >cll-_,dit,i_l_. l_c-

call in section 2.1.1 that thepreselweofge_wral anisotropic aTld to>>\ nl_'_lia r_'cluirc-

the application of ari auxilarv adjoint system. [ogether with which the' f_vr'tirwrlt

functional is given bv a generalized form in (2.11 ). It is lherefore necessary lo })egin

with this generalized functional rather than (2.43). In a source-free regioil. (2.11)

explicitly takes the form

• = " -/"0P_ "_-(H_ H) Ha V" × c, -V x H H dl 9.-14)

and the variation is imposed on the adjoint variable Ho to get

= 0 2.45)&T(H_, H) _H=0

The variational functional method of this version proves valid and identical to Galerkin's

technique for any linear operators in electromagnetic problems. It is also interesting

to note that once compared to Galerkin's method, the adjoint field quantity H= in

(2.44) seems to take place of the testing function V in (2.11). However. Ho theo-

retically differs from V in that the former is defined as a solution function for the

adjoint system of the original PDE problem, whereas the latter is just an arbitrary

admissible testing function that does not have to be a solution to the adjoint system.

Apart from the concept difference as mentioned above, the mathematical proce-

dure required to derive the FEM system is similar to that presented in the previous

subsection, and will not be discussed here to avoid repetition. One can be assured

that the final system obtained from (2.44) and (2.45) is of course identical to (2.42).
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2.4 Parameter Extraction

An accurate full wave analvsi- can only pr¢,dict ltle ll¢'al ti,'l,l ,f_,I I'l)V T',t,,'

methods) or current (for integral based lechni(lu_,> I <ti_tri}_ulio11:. _Vllic[L (aXl 1,¢' U-_'d

to obtain certain practical parameters depending on application.-, t"or in_rica1,.sw-

terns, involved numerical models may be needed for output data extraction, includillg

far field evaluation in the presence of non-canonical platforms and a de-embedding

process for antenna feed network or circuit simulations.

Antenna parameters can be readily evaluated after the near field distribution

is achieved via full wave analysis. The de-embedding process is required fox feed

network or circuit modeling and will be discussed in chapter 7. For a non-planar

platform the far field evaluation can be obtained from the general discussion in

chapter 1, where the formulation in terms of the dvadic Green's function must be

used to consider the equivalent currents and the free space Green's function.

2.4.1 Radiation and RCS Pattern

In the case of antennas, we are mostly interested in their radiation and scattering

patterns and other related parameters such as gain and axial ratio. (The near field

quantities such as input impedance, feedline S-parameters, etc., will be disccussed

in later chapters). Both radiation and radar cross section (RCS) patterns can be

readily characterized with respect to the 3-D spherical coordinates 0 and 0.

Consider the planar cavity-backed antenna as shown in fig. 2.1. Once the field

distribution on the aperture S of the conformal antenna is obtained from the full wave

analysis, we can then proceed to evaluate the far field pattern. The most straightfor-

ward approach for this computation in the presence of an infinite conducting ground

plane is use of the equivalence principle. To do so. we define the magnetic current



normal to the al,ertuw surface. Tlw eh'c_ric vector t,olcrJtial i_. tlw_ ...,,ixe_ },_

F(O.o)
(O(-Jkr /_

- M _"k r' d."'
4=r .

(Oe-Jk: /L E'C : )erkr'- 4rrr ( x d.g"
(2.-161

where the electric field is typically expanded in terms of the surface vector t,a>i>

function S,_. Introducing this expansion. (2.46) becomes

4rrr _ , E_ , S', x _c skr' dS;'

(OC -jkr __

4 rcr
(".4T)

m

where V denotes the sum of the surface integral over each of the discretization

elements on the aperture. The far zone magnetic field H becomes

HT = --j,ZFT (2.-1S )

where HT represents the transverse component of the far zone magnetic field, whose

0 and 0 projections are given by

Ho = -j.. 'c°e-_k_ {cos 0 cos Ct_. + cos 0 sin 01; - sin 01:- }
4rrr

_,,f.oe- J kr
- Po

4rrr (2.4._))
£O(_--J kr

He = -j_ 4_-----T-{-sinCE + cos¢_,_}
_,,£oC--J kr

- p,
47rr

in which Po = -j {'} and Pe = -j {.}, and {.} stands for the corresponding terms

in the curly brackets. The RCS of the t (t = 0 or 0) component can be represented

in terms of Po and Po to yield

°'__ = 4ri'r 2 iHt]2 ,2.2_ __01p,l__ _ i_
IH,I _ 4_ A2-Z_ IPe (2.50)
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whereA and Z. = \/)+u,/_t, are the free space' v,av<,It, ll_t }i at_(l tl,c ittttit1-.+c iIIll,,'<lall_,'.

respectively. In (2.,501. Ill(' incident wave pll++ v,'a.- +('t re, unity x',itlLt)ttt IL,.> ,._l ut'tlt'ral-

it,,. In practice, it is customary to expres.,, l{('._ in ,ll:_. ,.vh<,t_, ,.-r,i- usuall\ ta)tIt+ali/t'(l

to &2 or to squared meter first.

The radiation pattern may also })e represented in the sanle manner a_, nwlltk)m+(l

above. The difference in procedure here is the normalization with respect to a nlax-

imum radiation field value. The reason is that in radiation mode. the antentta i>

excited by an interior source rather than the incident plane wave H + as in the scat-

tering case. Of interest therefore is the relative field intensity in the fat zone. To get

this, we represent the far field intensity in terms of the above calculated quantity

o"rcs to avoid a repetition of post processing. Specifically, the fornmla

FCS

o.rad __ CTt

(O.fCS)max (2.51)

is used for radiation analysis.

2.4.2 Gain and Axial Ratio

Gain (G) and Axial Ratio (AR) are two important parameters which indicate the

antenna's performance. It is also noted that these two quantities typically charac-

terize the far zone features of the antenna.

By definition, the gain G for a lossless antenna (with 100% efficiency) is given by

2wUmax

G= Prad (2.52)

Tfor a cavity-backed structure, where bm_x is the maximum power density and frad

denotes the total radiated power from the antenna in the upper half space. (It is

noted that this definition of G is identical to that of directivitv for lossless antennas.)
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the antenna gain becolne_

_2.',:{

Zo(ere + ao)
G = (2.7,.1

2P,_a

Thus. the computation of G is rather trivially done once a is found as given in lilt'

previous subsection. In reality. P_a may be evaluated on an assumption that all

input at the feed is transferred to antenna element(s) and radiated. In this case. oxle

has P, ad = I2Ri_, where I is the known current source on the feed, and Ri,, is the

input resistance of the antenna measured at the reference plane.

However, this scheme may not always work since the gain (more precisely di_'ec'-

tivit!l ) reflects the far field behavior, while the input resistance computation relies

on an accurate full wave model for near field prediction. It is well known that the

far field and the near field computations offer different accuracy. This accuracy in-

consistency arises if Rin is used to determine the gain G, a far zone pattern whose

accuracy is directly governed by the near field computation without averaging effect.

To avoid this accuracy inconsistency, one may calculate the gain or the directivity by

evaluating P_d from the far field radiation pattern. Specifically. P_d can be obtained

by integrating the radiation intensity

P_a = f / [ g dft
ddJ2 7r

Zo/ff2,(, e= 4-7 +

over the half space. It is obvious that if a certain symmetry of the pattern remains

such as circular about the vertical Z axis, then g(O,o) reduces to [:(0) and the above
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integration can be effecti,.elv evaluated. Olherwi_,e. a nutll¢'ric.] 2 l) itlt_'_l'a_i_,IL i-

required.

Axial ratio (.4f{) ix another ilnportant antenna l_aralllOtcq '. ¢,N.,ciallv ull¢,n a

circular polarization ('P) of antenna's performance is of theprimarvcon¢-erll. Silw¢,

AR also features the far zone effect of the antenna, it is desirable to determine AI{

with a minimum comt)utationa] load. It is noted that given the above pre-cahulat¢'d

o0 and co. one is again able to determine .4R uniquely by

.4R- lio._. (2..5t;)
short

with

9 2 2
4 + _0.00. ° COS ,3] _

(2.57)

_ho_t= ,7_+ qo-- % + -o'o%cosd]_

where/3 = 2(_Ho -- _H,), the twice of the phase difference between the two magnetic

field components. It can be obtained from the quantities Po and P® defined in

(2.50). Since these two quantities are complex numbers, the phase difference is

readily represented as

fl=-jim {In p_} (2.58)

with Im {.} being the imaginary part.



CHAPTER III

Edge-Based FE-BI Technique

3.1 Introduction

Numerical methods have been serving the engineers and researchers for many

years in antenna analysis and design. Among them, the moment method in coil-

junction with various integral equation (IE) formulations played a major role [1 3].

However, IE methods are associated with field representations in which the at)pro-

priate Green's function for the specific geometry must be employed and this limits

their versatility. Moreover, IE techniques are usually formulated on the assumption

of an infinite layered (not inhomogeneous) substrate, a model which deviates from

the practical configuration and leads to inaccuracies for larger bandwidth antennas.

Furthermore, in the context of IE methods, antenna excitations are represented us-

ing simplified models that differ more or less from the actual configurations. Also,

due to the singularity of the current distribution near the feed junction(s), special

measures must be taken [26] for proper modeling. In contrast, the hybrid Finite

Element-Boundary Integral (FE-BI) technique alleviates these difficulties and this

was recently demonstrated when the method was applied to inhomogeneous objects

of canonical shape scattering [27, 28] and rectangular patch antennas [9].

Based on the past success of FE-BI methods for antenna anah'sis, it is desirable

43



to extend tim reel hod 1o antenna.- of arbil rar_ ..lial_.. ]tl I[1i- cllat,1_,i. ,_ll ,'_1,_',.ira-,.,]

hybrid tinite (']('nwrl_-boundarv i_lTegra] f_rlllula_it,l, i> t_r_'_.,'ILT_',If_r l iJ,' clmlacI,'z-

ization of arbitrarily shaped cavilv-lmcke(t azl_'_l_a_. [29 i. .\ll _'×a_lll,h' t_f ..u,l_ a

configuration is shown in fig. 3.1. where a (axitv i_. rv(ess_,d in a n_'tallic ta,u_,_l

plane enclosing the ]:'E.M volume. The antenlla elements on the aperture may t.,

excited by different schemes, such as a simple probe, a magnelic frill gen_'rator, a

practical coaxial cable, microstrip line. slot or a CP\V line. In the contexl of the

FEM, the cavity is firsl discretized into a number of tetrahedral elemenls t]lal llalu-

rally reduce to triangles on the cavitv's aperture. For non-rectangular patches this

triangular gridding is. in general, non-uniform and the exact boundary integral for-

mulation based upon this mesh applies to any patch shape. As a result, the hybrid

FE-BI technique is capable of modeling arbitrarily shaped cavity-backed antenna

configurations, different substrate inhomogeneities, anisotropies, as well as various

practical excitation schemes.

3.2 Hybrid System Functional

In this section, the edge-based hybrid FE-BI method will be formulated using

the variational principle, where matrix algebra notation is employed so that one can

readily extend the formulae to the general anisotropic case. As presented in [9].

the complete functional pertinent to the scattering and radiation by a cavity-backed

configuration shown in fig. 3.1 may be written as
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Figure 3.1: Illustration of a typical radiation and scattering t)roblem.

F(E) = _ (V×E)-I(v×E)-ko2_E .E dv

+ 2jkoZo//(E × H i) • _ dS

where J, and Mi represent interior electric and magnetic current sources within

the cavity V; H i is the incident field, if any, from the exterior region; the surface

S encompasses the cavity aperture excluding the portion occupied by the antenna

elements; c_ and tt_ denote, respectively, the relative permittivity and permeability;

k0 is the free space wave number, i the unit dyad, and G0(r, r') the free space Green's

function with r and r' denoting the observation and integration points.

3.2.1 FEM Subsystem

In proceeding with the discretization of (3.1), it is convenient to decompose it as

F = Fv + Fs (3.2)
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Figure 3.2: A tetrahedron and its local node/edge numbering scheme

is expanded using edge-based elements as

E = [v]T{E}+ (3.3)

with

IV]+

{E}+

Vu2

E2

11 = x,y,z (:t.4)
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in whi(tl 1 _, i._ the u I_ = .r. 9 or z_ ('omi_t_lwnt of lhe vo[unw \eclol t,a_i- fux_c_i_._-

along the ith edge. The unknown vector {1:'}. ha, six enlrie_.<,ll_' f_,zcach l_'tla}_.

dron edge. (ttere we use square brackets for matrices alld curl\ t,racket- for x,'dor-I.

Inserting (:/.3)into (3.1). and taking the first variation of _\. wittl rcstwc_ Io {t.} .

yields

where

{h'}_ I
Jiz

1
J,_ + V x

k

!lli_

M,:

d,, (3.V)

[DVly =

o v;}

°{v;} - o{v,;} (3.s)

o{_i}_ o{oy v;}

To carry out the above integrations, it remains to introduce the volume expansion

or shape functions V_. For our implementation we employed the linear edge-based

shape functions for tetrahedral elements given in [30, all. The explicit finite element

matrix entries associated with a typical tetrahedron (as shown in fig. 3.2) are given

in Appendix A for reference.



3.2.2 Boundary Integral Subsystem

gular elements since these correspond to th(' fat('> t)t' llw tct_al,¢'_lral>.

triang]e, the field is represented as

To discretize the surface integrals iu (3.1). flu' al)vr_ur(, i_, ,,_ll ,livi,l,,(t i)_t_, lriai_

\\'illlill ca<l)

E = [5"]_r{ E_}, 1:3.9)

where

SU l

Su3

Es3 e

u = x.y (3.10)

in which S,, is the u(u = x, Y) component of the surface vector basis functions along

the ith edge. On substituting (3.9) into the surface integrals of (3.1) and taking the

first variation of Fs with respect to {E,}¢, we obtain

where

•Go(r, r') dS dS' (3.]2)

and

(3.13)



.Nole that in (3.12) the eh,ment_ of the array i?"._ arc fui_ction_, _,f lll_' _,l,,,t.vva_i_,l_

vector r. w}lerea._ the e]ementsof '_,.!z ar_" witll r(,_t_¢,<t to the iz_t¢,tratit_i_ l_oill_ r'.

A suitable set of linear edge-based surface basi._ functions is

/, 5 >: (r r,)_(r) r_.¢,
S,(r) = 2.4,

0 ot herwise

/:l.t.l _

In this expression (referring to fig. :3.3)./, denotes the length of the ilh edge and r, i.-

i th edge

0

Figure 3.3: Pair of triangles sharing the ith edge

the position vector of the vertex opposite to the ith edge. Since each edge shares two

triangles, one is defined as the plus and the other as the minus triangle. Therefore.

e(r) is given by

1 rES +
_(r) = (3.15)

-1 rES[

where S, = S + + S/. The constant A, in (3.14) denotes the area of the plus or

minus triangle depending on whether r E S + or r E S_-. We note that S,(r) ×

yields the basis functions used by Rao, et al. [32] in their moment method solution

of boundary integral equations. The explicit expressions for the boundary integral

equation subsystem is given in Appendix ]3 for reference.
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3.2.3 Combined FE-BI System

Io construct the final systemfl,r the soluliott of t},_'_'l_'clricti,'l_lCt_tlll_t_lwIll-XVt'

combine (:.{.5)and (3.11). and after assembl\ w{,ot,lain llwsxstclll

{[A]{C} + {.,,}} + {[B]{C,} + {t.}} = 0 (3.16)

In this. {Ix'} and {L} are the excitation vectors due to the interior current sources

and the exterior excitation, respectively. The unknown electric field vector {El

consists of all field expansion coefficients with respect to the element edges except

those coinciding with perfectly electrically conducting (PEC) walls. PEC amenna

element(s) or PEC pins inside the cavity. Finally, the vector {E,} represents the

unknown surface fields whose entries are part of those in { E} with their corresponding

edges on the aperture. The explicit expressions for the matrices and vectors in (3.1(;)

can be readily extracted from (a.6), (a.7) and (3.12) (see also [33]). It is evident that

[A] and [B] are symmetric as a result of the assumed isotropic medium and reciprocity.

In addition, [A] exhibits high sparsity due to the FEM formulation whereas [B] is

fully populated.

Two approaches may' be followed in carrying out the solution of the combined

subsystems when an iterative solver is employed such as the biconjugate gradient

(BiCG) method [34]. These approaches differ in the manner used for the evaluation of

matrix-vector products called for in the iteration steps. One could sum the coefficient

matrices [A] and [B] by adding up the corresponding matrix entries prior to the

execution of the BiCG algorithm, or instead the resulting vectors may be summed

after carrying out the individual matrix-vector products. We observe that the first

approach is more efficient in terms of computation time after reordering the combined

matrix and storing only the non-zero elements. This is because, in the conlext of
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this ._chenl< tim conlbination of the Ixvt, mallicc> it T,_.rforn_,d o_1[\ ol_cv _,ut>i,{,. _fL_.

iteration, tlowever, the second ap[_roach i.- COml)a_il_h' xxiTtl the l_i('(;-Vl"l ,clwllw.

where the t"FT algorithm is employed to exploit tlt_' coilvolutional l,r_,i_crt5 _f ¢ll_'

integral operator, thus elin_inating a need _o ('xpli(iIly s_ore tb_' etltire Ill matr}x.

The Bi('G-FFT technique will be discussed in chapter 4.

3.3 Numerical hnplementation

Based on the above presented FE-B1 formulation, the hvl)rid method was im-

plemented and a computer program was developed for the analysis of radiation and

scattering by cavity-backed patch antennas of arbitrary shape. The antenna geom-

etry/mesh is first generated as shown in fig. 3.4 and supplied to this program in an

Figure 3.4: A typical geometry/mesh for a cavity-backed circular patch antenna.

input file which, as a minimum, contains

(a) the nodes and their (x, y, z) coordinates;

(b) the tetrahedral elements and the corresponding nodes forming each element,:

(c) the nodes identifying the cavity aperture;
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For arbitrary antenna geometries, it is necessary t¢, ¢'nlploy _l St,ldli>th'al¢,_] x¢,]ll_ll_'

mesh generation package and a number of these, are availal_le comnmrciall\. I5 lficallv

each of these packages generates a "'universal file'" tha_ can be readily t)reproce.,.,ed It,

extract the aforementioned input list. Given the above list of data. an imerpretation

routine is used to convert the information from node-elements to edge-elenmnts. \Vc

usually refer this procedure as data preprocessing. The flow chart shown in fig. :l..'_

describes the major implementation procedures from the mesh generation, a few data

preprocessors, the FE-BI kernel, to the BiCG solution and finally the data output.

One of the primary complications in the hybrid technique implementation is tile

efficient treatment of combining the two separate subsystems. It is noted thai the

FEM sparse matrix is large in dimension but requires less storage space, while tile

boundary integral subsystem is always small in size but can be dominant in terms

of memory demand. This is particularly true when the non-metallic portion on the

cavity aperture predominates over the antenna radiating elements. Furthermore.

the boundary integral subsystem in a general purpose hybrid FE-BI implementation

is entirely independent from that of the FEM and even the basis functions can

be independently developed. This also accounts for the two arbitrary numbering

svstems and combining them is a relatively complex task. One major advantage of

the method however is that these two subsvstems can be developed and validated

individually.

Once both of the subsystems are verified, the coupling of the subsystems is ac-

complished by enforcing the boundary conditions implicitly on tangential H fields via

the integral representation and explicitly on tangential E fields over the interior and
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manner so lhal }_oth t[_e storage and compulalional lv_luir_q_'_ll- ca_ t., I_il_i_l_i:_'d.

Specifically. the boundary conditi(ms on the metallic surface- a_c ci_t_,vc_'d , pr'_<,l._

to condense the system which involves only nonzero)ti('ld compoilents. l_J thi_ i)oii_I.

the sparse finite element matrix was stored as a si_gh, array of h'ngll_ .\, .V,,,. wild,re

.\_. is the total number of unknowns within the cavity volume and .\., denole., tl_e

maximum number of nonzero row entries. Tl,e BI n_atrix was s_ored in differem

ways for the evaluation of the matrix-vector products. If the Bi('(; solulion wa._ lo

be carried out without special treatments (such as incorporating the FFT). then the

N_ × A'_ BI integral matrix is added to the FE array resulting in a 1-D array about

3,'_.._,_ + Ny long. For slot antennas, including cavity-backed spirals, and moderately

sized systems, it was found preferable to use this scheme. In that case the generation

of a single combined FE-BI matrix before execution of the BiCG algorithm reduces

the computational requirements. This is because a number of operations associated

with the repeated combinations of the FE and BI subsystems within the BiCG iter-

ation is avoided. The alternative is to carry out, the matrix-vector products for the

FEM and BI subsystems separately. The advantage of the scheme becomes appar-

ent when a special treatment is performed on to the numerical system for efficiency

consideration and this will be investigated at certain depth in chapter 5.

3.4 Selected Numerical Results

We present below some representative numerical results for the purpose of vali-

dating and demonstrating the robustness of the tetrahedral formulation for scattering

and radiation by different configurations of cavity-backed antennas. In each case the

computed results via the FE-BI method are compared with reference measured or
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calculated data.

Scattering and radiation by a circular patch:

Vig. 3.6 il[ustrales a circular l,atch residing on tlw >urfacc t,f a (I. 10t; ctll lllick

substrate having a relative dielectric constallt of _r = '2.9. l[w patcl_: diallwtcr i_-

2.6 cm and the substrate is enclosed in a circular cavity 6.292 cn_ wi&,. ]l_is <avilx

and the patch were recessed in a low cross section body for m_'asuring ils ]{('S. :\

comparison of the measured and calculated backscatler aae_ ]{('S as a funclioJ_ of

frequency is also shown in fig. a.6. For this computation tile direction of the incident

plane wave was 60 ° from normal, and as seen the agreemenl between measurements

and calculations is very good throughout the 4-9 GHz band. Input impedance mea-

surements and calculations for the same patch are displayed in fig. a.7. The probe

feed in this case was placed 0.8 cm from the patch's center and it is again seen that

the measurements and calculations are in good agreement.

Radiation by a one-arm conical spiral:

We considered the modeling of this radiator to demonstrate the geometrical ver-

satility of the FE-BI method. Two projections of the spiral radiator and surface mesh

are illustrated in fig. 3.8. The top and bottom edges of the strip forming the spiral

follow the lines p = 0.0503)_exp[0.221(gS+ 2.66)], z = a± exp(0.2210), where (p, o, z)

denote the standard cylindrical coordinates, a+ are equal to 0.0832_ and 0.02,57k.

respectively, and 0 < ¢_ < 2rr. This spiral arm resides on an inverted cone (9.24 cm

tall) whose bottom cross section has a diameter of 1.68 cm and the top cross section

has a diameter of 9.1.78 cm. For our calculations .X = 30 cm (f = 1 GHz) and the

spiral was situated in a circular cavity 10.01 cm deep. The computed E¢, principal

plane radiation pattern taken in the ¢_ = 90°-plane. using a probe feed at the cavity

base. is given in fig. 3.9. It is seen that this pattern is in good agreemen_ with the
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Figure 3.7: Comparison of the computed and measured input impedance for the

circular patch shown in fig. 3.6. The feed was placed 0.S cm from the

center of the patch and the frequency was swept from 3 to 3.8 GHz.
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dala gixen in [35]. .-\s cazl I,t. expected, lh_' t'L tm_lvrll in_,1 _tL_,Wl_b diff,'l,',t fi'_,lll

the nwasured data near the horizon because of interfereI_cc [ltJIIi lilt ti_,il¢' circular

cavity housing the spiral which wa.- included in the analytical nmdel. ]]m lal _,'i wi,_.

not part of the measurement configuration which consisled of the spiral anTct_im oi,

a large circular plate.

Annular slot impedance:

Fig. 3.10 shows a narrow circular (0.75 cm wide) annular slot situated in a ci>

cular cavity 24.7 cm wide and 3 cm deep. Because the annular slm is narrow. _hc

implementation of the BI subsystem is verb' small for this application and as a result

there is no need to invoke the FFT in the BiCG algorithm. The FE-BI method is

basically quite effective in modeling small aperture configurations without a need for

special computational considerations. Input impedance calculations as a function of

frequency for this radiator, excited by a probe placed across the slot, are shown in

fig. 3.10, and agree well with the values calculated via a modal-boundary integral

method [14]. For these calculations, the frequency was swept from 700-1000 MHz.

The dielectric constant of the material filling the cavity was set to e_ = 1.35 as in [36]

and this is an effective value to account for the presence of a dielectric slot cover used

as part of the measurement model for holding the plate.

Stacked circular patch antenna:

To demonstrate the capability of the developed hybrid technique, we now present

a qualitative study and visualization of the near field distribution inside a cavity-

backed, stacked circular patch antenna as shown in fig. 3.11. Note that the similar

configuration with rectangular patch shape has been investigated and found a sig-

nificant bandwidth increase. This is because of the dual frequency resonance due

to the two stacked patches. The circular patches are more attractive than slacked
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Figure 3.8: Illustration of the configuration and meshof the one-arm conical spiral

used for the computation of fig. 3.9.
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Figure 3.9: Comparison of the calculated radiation pattern (E_), taken in the o =

90°-plane, with data in reference [35] for the one-arm conical spiral shown

in fig. 3.8
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Figure 3.10: Comparison of input impedance calculations for the illustrated cavity-

backed slot.



rectangular patche_ becal.l>e thin, occupy a ,111all area whelj _,t_cra1_.d at I tL_.>aill_' fl_'

quencv [3?]. lnfortunatelv, no sufticient re_,valch oli I11i> g_'_mlelrv lla- I,,,,11 i_,l,_,II_,_l

in the literature due to a lack of ailalwis tool.

It turns out that the above presented hybrid FE._I technique is well _,uiled for

this study. To show this. we chose a cavity-backed, stacked circular patch alllenna

fed with an offset single vertical post underneath the lower patch to link the cavity

base (viewed as a ground plane). No direct electric contact between the uplmr and

the lower patches exists and thus the power transfer has to rely completely on the

electromagnetic coupling from the lower to the upper patch. This can be clearly

verified from the near field visualization, which is available and complete only via the

PDE related techniques. (The laboratory measurement may provide the image of the

field distribution above and near a microstrip [38].) Another interesting point is that

though the antenna was fed with a single offset probe, the energy is concentrated at

two distinct regions. One is around the probe feed, and the other is near the opposite

location with respect to the center of the patch. The two regions act as out-of-phase

electric pole to effectively excite the antenna. Although the patches are circular in

shape, the offset excitation ensures the linear polarization in radiated fields.

Figure 3.11: Visualization of the near field distribution at the lower laver of a stacked

circular patch antenna.



CHAPTER IV

Efficient Boundary Integral Subsystem I

4.1 Introduction

As is known, the hybrid finite element-boundary integral method is accurate and

capable of handling a variety of conformal antennas. However. the drawback as-

sociated with this technique and any other global truncation approaches can make

it less attractive. This is especially true if one is interested in modeling large an-

tenna systems (arrays). Although the FE-BI method is particularly suited for the

configurations with relatively small aperture size and possibly" complex cavity design

(including feedlines, isotropy/anisotropy, other layers of metals, etc.), it would be

much more useful to accelerate the speed and reduce the CPU requirement for" the

hybrid approach. One possible solution is the CG-FFT technique discussed in this

chapter.

The boundary integral (BI) equation subsystem leads to a full)' populated matrix

whose size is determined by the number of aperture mesh edges. For large apertures.

this analysis becomes impractical in terms of storage and computation time require-

ments, and to overcome this inefficiency, a uniform zoning of the aperture is required.

By resorting to the structured mesh, the boundary integral matrix can be cast into

a discrete convolutional form, thus permitting the computation of the matrix-vector

61
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l)roducls via the discrete Fourier t ral_sfornl ( l)l"-I ) ;lt_tl a_t,i(]ill_ a l_,.(.tl I_, -I,,_. I}_(,

full BI matrix. Ttlis menlorv sax'ilkc sch('nl(' ha> alr('a,l_ I,('('1_ al)l)li('d t,, IIi-_,l_i,,_.-

involving rectangular grids [:)._).3-11. and a similar iTllt,h'llmIIlatioll wa_. alst)v('t)ollt'(t

for triangular surface grids [40] involving inherent approxinlations. In thi_. ('llal)It'r.

we first show that the BiCG-FFT solver can be preci..;ely implenmnted oI1 uniform

triangular meshes. The differences between the rectangular and triangular m('sh('s

are also described. For non-rectangular antenna geometries, a sl)ecia] treatn)enl rt,-

ferred to as the overlaying scheme is proposed and discussed in section 4.3. A few

results are presented which demonstrate the method's validity.

4.2 Application of Conjugate Gradient Algorithms

The Conjugate Gradient (CG) iterative solution of linear systems of equations has

been extensively investigated and the representative references are collected in [41].

Although the state-of-the-art CG algorithms do not lend themselves as a robusl

input/output "black-box" [42], they are indeed capable of handling large-scale com-

putational problems which may be impossible for direct system solvers. It is espe-

cially desirable to employ the algorithms when one seeks the solutions of large-scale

numerical systems without resorting to costly computing resources.

4.2.1 BiCG Algorithm With Preconditioning

Conjugate gradient (CG) algorithms have been developed for over forty years

[43, 44] and one of the primary applications nowadays is to solve large scale linear

systems, as aforementioned. It is noteworthy that there exist various versions of

the CG algorithms, taking advantage of different properties of the matrix such as

symmetric and sparsity. Also. preconditioning is often used to speed up convergence.



.-ks su,,oe_ted.,._. ixl [45.4(; i. the algorithm used il, tills- wt,rk i> a- f_,ltoxvs:

Given

Pl =rl = b-A.xl

For /,'= 1.'2.3 ....

_. • r k
Ok _

_-Z_- A • p j,.

rk+l = rk - ol,.A • p_..

G+I = rk - o_,.A "T " P_.

flk -- _k+l " Fk+l
--m

r k • rk

xk+l = Xk + akpk

where * denotes the complex conjugate and T is the transpose. This version of the

iterative algorithm is quite general in terms of the system matrix to be solved and

is usually referred to as the Biconjugate gradient (BiCG) method for unsymmetric

systems. If the matrix A is symmetric and the initial value is chosen as rl =

r_, the algorithm can then be shortened to require only one matrix-vector product

per iteration, since in each step _: and Pk are complex conjugate of rk and Pk,

respectively.

The ordinary conjugate gradient algorithm can be considered as a special case of

the BiCG when A is Hermitian (i.e. A = A'T). Again in this case, the algorithm can

be shortened to have about 50_ less computational effort. The CO algorithm is also

amenable to a straightforward interpretation of its convergence principle. Basically.
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the algorithm nlinimizesthe funclion

1
f(x)= -x.A.x-b-x

.)

Hence x obtained from the ('G algorithm after the /, iteralioli sit,l)> Iw¢'ozlms lhc

solution of the equation

...Xf(x)= A-x-b=O

The CG type of algorithms did not become competilive until preconditioning

was introduced to improve the original svstem condition and significantly reduce the

convergence rate. One simple preconditioner is the inverse of the original diagonal

matrix. In our applications this preconditioning has been quite successful and is used

in conjunction with the BiCG algorithm.

4.2.2 BiCG-FFT Algorithm For Linear System

In our work, the linear system of equations is usually large in size. partially full

and partially sparse. The conjugate gradient (CG) type of algorithms can be used

to alleviate the memory requirement since the LU decomposition requires excessive

memory and CPU time. However, the partially dense matrix due to the boundary

integral equation may still dominate the CPU demand. This is because the method

of moment (MoM) always leads to a dense system by its nature. Solving the dense

system in a traditional manner requires O(N 2) order of operations per iteration,

where N is the boundary integral system dimension. Reduction of the operation

counts will of course significantly decrease the solution time and this can be accom-

plished by' recasting the BI system onto a few Toeplitz submatrices and making use

of the fast Fourier transform (FFT) to carry out the matrix-vector products in the

BiCG solver.



.-ksdescribedin the next seclk)n, lhc I_oul,dar\ ilJl_'_la] _'(_llaliOl| Call },_' Oh-1 iIl_t,

a convoluTional form if a uniform _rid is applied for discreli:_a_i_ll. lt,i-i. t_,I >ur-

prising since the Green's function i> involved ill the illl_'gl'al iOlI. to >o[\_' I ll_' C(lllal it_II

using the ('G algorithm, i! remains Io carry out the convolut}ol_ a! eat]) ilcralhm.

To this end. one may calculale the convolution by taking tile Fourier lral>fonn of

two spatial data sequences (arrays) in which the convolution t_ecomes _he product of

the two "frequency" sequences. An inverse transform of the prodtlc! yields the result.

In contrast to the order of O(.T 2) CPU requirement for a malrix-\ector producl in

a traditional fashion, the scheme needs O(.¥log 2 ,\') operation counts if the FFT

algorithm is employed. The operation reduction is indeed significant and the tech-

nique has the lowest CPU demand among integral equation solvers, including the

fast multipole method (FMM) [47], thus is alwavs preferred.

4.2.8 Convolutional Form of Boundary lntegral

The boundary integral equation is discretized using the structured triangular grid.

and the relation between the unstructured and structured mesh is described in the

next section. We recognize that the triangular grid consists of equal right triangles

as shown in fig. 4.1 and thus involves three different classes of edges (class 1.2 and

3). These include the z-directed, p-directed and the diagonal edges, all of which are

uniformly spaced. For the FFT implementation each class of edges is independently

numbered in accordance with their geometric location. Specifically, the ith class will

carry the numbering (rn, n) if the edge is the rnth along the a" direction and the nth

along the ?,, direction. The indices (m, n) take the values

rn = 0,1,2 .... ,M i

n = 0,1.2 ..... :yi
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Figure 4.1" Structured mesh consists of equal right triangles

with i = 1 for the y-directed edges, i = 2 for the diagonal edges and i = 3 for the

x-directed edges. Consequently, we find that

M'= M-1 i=2 ,_"'_= N-1 i=2 (4.1)

M-1 i=3 N-2 i=3

where M and N denote the numbers of elements along the x and y directions.

respectively.

To perform the integrations for the evaluation of the boundary integral matrix

elements, it is now convenient to rewrite the basis functions (3.14) in terms of the

new indices (re, n). We readily find that the edge-based basis functions associated
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0

t.r q l ._ _,'"

(.r ill _ "-

oi ]wrwise
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_Xa'Ay
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(y-(,_ + 1)_xy)._.+ (,,,A.,.-.,.)k ¢ 3',-(1.:_)
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((n + 2).Xy - y).i" + (a'- (,,, + 1)_X.r)_) (.r.y) E ¢+

I

S_,(x,y) - Ay (y- nay)/+ (m_Xx- a')_ (.r.y) ¢ S( (-1.1)

0 otherwise

where the superscripts refer to the edge class• After the discretization and asseml)lv

processes, one obtains a discretized version of the BI system, from which each entrv

of the boundary matrix-vector product can now be calculated as

{Blsubsystem}-[Bl{E,}=_-'_ _ _ o EJBmn,m'm' rn',n' (4.,5)

j=l ml=O n_=O

in which (m, n) are the geometric location indices for the ith class observation edgos

whereas (m',n') are the same for the jth class edges belonging to integration el-

ements. Thus, the specification of the indices i, rn and n completely defines tile

entry ki =naI _ + M of the column resulting after the execution of the boundary

matrix-vector product. It is readily found that

= S_ • S_,., Go(r, r') dx dy dx' dy'

( u)8 iL iis ei(r)ej(r)liljGo(r,r')dxdydx'dtj+
,AxAo, _ , •

4.6)
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=i

_ ") _ l.d I

= :_

.More importantly, it can be shown that tile BI subsvstenl (-l.(i) exhibit_ tilt' c<)lJxo-

lutiona] property B_,_.,_, n, : BI___,.,__,_, ) and thus we can rewrhe (-t.5) a.,,

3

[B]{E,} = Z B',, (4.sl
./=t

where the * denotes convolution. The proof will be presented in the end of this

section to ensure the smooth discussion of the remaining procedure. It is now seen

that the computation of the boundary matrix-vector product can be performed by

employing the 2-D discrete Fourier transform (DFT), thus avoiding a need to store

the BI matrix other than those entries which are unique. When the symmetry

property of Bi__m,,__,v) is also invoked, implying

,,_.,,= I .9/

it is concluded that the total non-redundant entries in the BI matrix are

3 3

h'; = _ _ Ni(M' + M j- 1) (4.10)
i=1 j=l

This should be compared to the (2ia__l M i5") 2 entries whose storage would normally

be required if the BI system was not cast in convolutional form and it is notewor-

thy that ._ is much smaller in number. To avoid aliasing, it is necessary that

B(m__,,__,v)i; _- B_;(ff_, _)• be cast in a 2-D array which has the usual periodic form.

and zero padding may also be required to make use of the standard FFT routines.

Specifically, the matrix-vector product (4.5) is executed by using the MFT×NFT
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arra\

=

B'_(- fi_.-Tt).

B'J(-F_. -_t.
MFT- M'+ 1 < ff_ < MI'T

0< fi < .\J

B'J(ff_._ - 1 - NFT).
0 < ff_ < M'

NFT- _\-' + 1 < i_ < NFT

B'a(fft - 1 - MFT, fi - 1 - NFT).
MFT- M' + 1 < ff_ < .MFT

NFT- .\o + 1 < i_ < Nt'T

0 otherwise

(-1.11)

with the corresponding field vector given by

t

, = J o < < M,,

[ 0 otherwise

0<7_ < :y2

(4.12)

and MFT and NFT must be powers of 2 if a radix 2 FFT algorithm is used.

In the BiCG-FFT algorithm the BI subsystem vector is symbolically computed

as

3

{BI subsystem} = E _ {DFT-' {DFT{B_J} • DFT{Esa}}}
i=1

(4.1,3)

The presence of the operator 06 indicates the necessary reordering of the 2-D arrav

which results after the inverse FFT operation into a single column with the proper

indexing for addition to the FEM subsystem. It should be remarked that in contrast

to [40] the integrals (4.6) are evaluated without introducing any approximation. This

is necessary to preserve the symmetry, feature of the global combined system.

As promised, we now show (4.8), or the relation B_,_,_,,v = BI__,_,.___, t to

conclude this section. To simplify the proof, we refer to fig. 4.2 and consider only

the first integral in (4.6). The same proof can be appied to the second integral in

(4.6). In addition, with no loss of generality for the proof, the i = 1 class edges
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Figure4.2: Illustration of two triangles with the corresponding indices Io help Io

prove the convolutional property of the boundary integral.

(y-directed) in 5;_+ for the trial function and the i = '2 class edges (diagonal) in 5"7

, c, 1 -for the testing function will be used. To this point substitutng _ m,_(x, y) in 5'_+ and

S_,n,(x, y) in 5;[ into the first term in (4.6) yields

?/" ?/"

Intmn,m'n' = C J JsH+ J JsH'_-[(n/ky -y)(n'/ky- y') + (x- m _2._x)(rn2Xx -Jr-2.._x- ,r')]

Go [(x - x')5: + (y - y')_)] dxdydx'dy' (-1.14)

where C is a constant coefficient and its detailed form is not of our concern for

this proof. Note that the integration limits should be set as [m_x, (m + 1).sxJ and

[n-_y, (n + 1)A9] for the unprimed coordinates and similarly for the primed ones.

Therefore, (4.14) will be simplified if the following transforms are introduced, viz.

x = max +

y = nay + 7?

x = m-Xx +

y' = nAy + 7?'

Indeed, on substituting the transforms, one obtains

[AxAy [[&xAyInt_,_.,,,,_, = C Jr/r/' + _(2Zx - {')] Go {.i'[(m - rn')Za'+
d dO d dO

(_- _')] + 0[(n - n')_y + (r/- r/')]} d&l,ld,_'dr/'

(4.].5)

(4.16)
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is howeveras._uredlhal theresultiIl_ext>ressio_lnmsl I,eatuiLctit_ltt,f t,-_,'l.lt_-

7/)] no matter what form the GreelSs function Go will _ak¢_. .klalt_¢,lna_icall.v. i_ [_,'a1_-

Intm,.m,,_' = lnt,,__m,.,__,_, i-l.IT_

This is the desired relation. From the proof, we can conclu<h'lhal lhc <on\olulio_l

in (4.8) holds.

4.3 Mesh Overlay Scheme

As described above, the BiCG-FFT solver requires uniform aperture gridding

so that the BI subsystem can be put in block circulant form. This can be always

achieved during mesh generation whenever the patches are rectangular in shape or in

case of radiators which are placed at. some distance (usually small) below the aperture

as shown in fig. 4.3(a). In the latter case, one might need to add an appropriale

absorbing material around the edge/corner of the cavity near the aperture to avoid

possible edge/corner effects, especially when the aperture size is not large enough.

Fig. 4.3(b) shows the example of this implementation.

4.3.1 Field Transformations

However, for circular, triangular, or other non-rectangular patches on the aper-

ture, it is not natural to construct a uniform mesh using the mesh generator. Typ-

ically, the aperture mesh is necessary to conform to the patch shape, leading to an

unstructured free surface grid. In this case, to make use of the efficient, low mem-

ory BiCG-FFT algorithm, an approach is proposed to overlay on the unstructured

aperture grid another coincident structured grid as shown in fig. 4.4. The boundary

integral subsystem is then constructed by using the overlaid uniform grid whose edge
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Figure 4.3: Printed circular patch antenna is modeled using the recessed scheme to

incorporate the BiCG-FFT algorithm. (a) Illustration of the configura-

tion; (b) Comparisons of the BiCG-FFT result with that of the ordinary

FE-BI technique presented in chapter 3.
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Figure4.4: Overlay of a structured triangular aperture mesh over an unstructured

mesh, shown here to conform to a circular patch.

fields can be related to those on the unstructured grid via two sparse transformation

matrices. That is, it is necessary to append to the system (3,11) the relations

(4.18)

where the subscripts u and nu refer to the field coefficients of the uniform and

non-uniform aperture grids, respectively. Also, [TF] and [TB] refer to the forward

and backward transformation matrices, respectively, with N,, and N,_ denoting the

numbers of the uniform and non-uniform mesh edges on the cavity aperture.

To derive the elements of [TF], we begin with the expansion (3.14) and enforce it

at three points on each edge belonging to the uniform grid. We conveniently place

these three points at the center and ends of the edge (see fig. 4.5).

Given the fields at these points, we can interpolate the field along the (7_. 7_) edge
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Figure4.5: Illustration of the parameters and geometry used in constructing the
transformation matrix elements between the structured and unstructured

mesh.

of the uniform grid using the weighted average

(E,,)(m,n)
Ne nd

1. 1 k
= _-e_,. Z E._(r_.d,)

- 2 _'rendl k=l

]Vmid

1 _ _-- Enu(rmid)
+ Aria k=l

1 /_'re n d _ }

-- Enu (rend_)
+ 2Aend2 Z k

k=l

(4.19)

in which _ denotes the unit vector along x, y or the diagonal, depending on the class

of edge being considered. The quantities E_,, represent the fields in the non-uniform

grid triangles with the superscript k being a sum variable in case rend1, rend2 or rmid

specify a point shared by more than one triangle. Obviously, J_endl, Armid and :V,,,d2

denote the number of non-uniform grid triangles sharing the node at rends, rmid and

rends, respectively, and will typically be equal to unity.

After assembling (4.19) into (4.18) we find that the elements of the forward



tran_fornlalio1_ n_atrix are giveiL ],\

1
I

--_endl k=l ,:l

\'m,d 3]

+-\'rni----_ Z _ ('JtS_(r'nid)

k=l _=1

,"_'en d 3 }

l
+- y Z',,,S;(r_,,d: )

_2"_"end2 k=l (=1

in which
(

j I j = j,
_idt

! 0 otherwise

(-t.2(li

and the global indices i and j correspond to the ith uniform grid edge and the jt h non-

uniform grid edge. The subscript 3_ is the global index used hi numbering the non-

uniform grid edges, whereas the subscript ( (-- 1, :2 or 3) is the local edge index used

in the definition of the basis functions St. We remark that the explicit computation

and storage of the transformation matrix elements results in a substantial increase in

efficiency because it avoids the usual assembly process during each iteration step and

that the proposed overlay scheme allows the analysis of large non-rectangular patch

arrays because storage of fully populated BI system matrix is avoided. The user

needs to only provide an additional data file which flags the uniform grid edges lying

on a PEC element and this is an important user-oriented feature of the formulation.

Following the same procedure, we can obtain the expression for the entries of the

backward transformation matrix. It should be noted that assuming each uniform

grid edge traverses three or less non-uniform grid triangles, the non-zero entries in

each row of [TEl will be 9 or less. However, they can reach a maximum of 18 if the

midpoint and endpoints reside on an edge of the non-uniform grid. The maximum

non-zero entries in each row of [TB] will be 1.5. but the typical number is much less.
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4.4 Results

Figure 4.6 shows a cavilv-back_,d 2 x 2 palch array, wllt,l_., t'_t(tl [_}tltll i_"_t I'i_tll

angled triangle. Since this geometry is adaptal)le to a uniforlll nwsll with rigtJl

angled triangles, it is used to verify our proposed FE-BI technique i]lcorporated

with the BiCG-FFT system solver. The developed FE BI code with the l{i('G- FI:T

is first compared with the original version of the hybrid FE-BI lec]lnique descril,ed

in chapter 3. As shown in fig. 4.7. the monostatic radar cross section ([{('S) paltern

over the space 0 _< 0 _< 90 ° at the o = 0 plane agrees very well with that compuled

using the regular BiCG solver.

It is also informative to compare the scattered fields by the same cavity-backed

structure without the patch array to find the contribution of the array to scattering.

Figure 4.8 shows the monostatic RCS patterns by the aperture with the absence of

the patch array. Again. the computations were obtained using both the regular BiCG

and BiCG-FFT versions of the FE-BI methods. As can be seen, the level of the

scattered field at the normal incidence reaches above zero in dB/A 2 with the presence

of the patch array, whereas the scattering by the aperture at the same incidence is

about 23 dB/A 2 lower.

To varify the overlaying scheme for nonrectangular geometry, we evaluated a

bistatic RCS scattering as shown in fig. 4.9 by a cavity-backed circular patch an-

tenna. In this case, the dielectric fillings of e_ = 4 and (_ = l0 inside the cavity were

used, respectively, and the results obtained using the regular BiCG FE-BI method

are compared with those computed using the BiCG-FFT with the overlaying trans-

formations. It is observed that the agreement is quite satisfactory in scattering

analysis.
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Patch Array

Figure 4.6: Illustration of tile cavity-backed triangular t)atch array.

For radiation analysis (e.g. input impedance) where an accurate prediction of

the near-zone felds may be required, the accuracy of the overlaying scheme can be

significantly enhanced by considering the trial-testing element's interactions in tile

boundary integral. Specifically, it is suggested to separate the interactions between

the closed-region elements from the far zone weak couplings. The strong close-

region couplings are treated using the normal method of moments, whereas the weak

coulings are computed using the fast algorithm. This approach has been reported

(see e.g. [47]), and once combined with the overlaying scheme, it can be used to

control the accuracy of the FE-BI technique in an adaptive manner.
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BiCG-FFT proposed in this chapter.
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BiCG-FFT proposed in this chapter.



RCSComparisonof TransformWith No Transform
O. • ........ ! ......... t ......... I ......... I......... I ......... I ......... I ......... t .........

-8

-_ -16.

e,,.,, -24.

e,-

"- -32.
E

-40.

-48.
r,..)

._ -56.

-64.

t_
-72.

-80.

"_'_¢'_r'"_'"_'_'_"Cf'_"_'_'_e"Cr--+.._. ¥ .....

_e ,_-_-. . .. .

With No Transform (permtttivity=10_

........ With No Transform (permtttivlty-.._,}

x, With Transform(permittivity=l 0)

_r With Transform (permittlvity--4)

...... I ......... I ......... I ......... I ......... I ......... I ......... I ......... I ........

O. 10. 20. 30. 40. 50. 60. 70. 80. 90.

Figure 4.9: Bistatic RCS scattering by' a crcular patch antenna modeled using the

regular BiCG FE-BI and the BiCG-FFT algorithm with overlaying

transform.



CHAPTER V

Efficient Finite Element Subsystem II

5.1 Introduction

As demonstrated in the previous two chapters (also reported in [13.29.48]). a

hybrid finite element-boundary integral technique [48.13] can be employed for char-

acterizing conformal antennas of arbitrary shape [29]. Indeed. planar/non-planar.

rectangular/non-rectangular designs, ring slot or spiral slot antennas with probe.

coax cable or microstrip line feeds can be simulated with this formulation. This

is because of the geometrical adaptability of tetrahedral elements used for tile im-

plementation. However, in practice, certain configurations require extremely high

sampling rates due to the presence of fine geometrical details. Among them are a

variety of slot antennas (spirals, rings, slot spirals, cross slots, log-periodic slots.

etc.), where the slot width is much smaller than the other dimensions (cavity diam-

eter or inter-distance of slots). In these cases, the mesh is extremely dense (with

over 50, 100 or even higher samples per wavelength), whereas typical discretizations

involve only 10-20 elements per wavelength. This dense sampling rate is especially

severe for 3-D tetrahedral meshes, where the geometrical details usually distort the

tetrahedrals. The numerical system assembled from this type of mesh often leads to

a large system condition due to the degraded mesh quality. Also. mesh generation is

8O
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Figure 5.1 : Geometry of cavit v-backed microsl rip ant ennas

tedious and the solution CPU time is unacceptably large.

In this chapter, we propose a finite element-boundary integral fox'mulation u._ing

edge-based triangular prism elements. It can be shown that this element choice is

ideally suited for planar antenna configurations containing spirals, circular and trian-

gular slots. Among many advantages of the prismatic elements, the most important

is the simplicity of mesh generation. Also, much smaller number of unknowns is

required for an accurate and efficient modeling of complex geometries. Below. we

begin by first outlining the finite element-boundary integral (FE-BI) formulation for

slot antenna modeling. A new, physically meaningful, set of edge-based functions

for prisms is then presented to generate the discrete system of equations. Finally,

the applications of the proposed hybrid FE-BI method to various antenna radiation

and scattering problems are given to conclude the chapter.

5.2 Hybrid FE-BI Formulation

Consider the cavity-backed slot antenna shown in fig. 5.1 where the cavilv is

recessed in a ground plane. To solve for the E-field inside and on the aperture of the



cavilv, a .'.tandard al.,l_roach i> loe.xtretllizetllefutlclh,l_al q3.1, x',l,i_lL, i,,I ra,tiali,_,t_

axJ¢l scatl,.'rillg l,roblenl.-., may be _,'neralized a>

l/j'/-F(E) = 2 .{(VxE).jTr-'.(V, E)-I,.t_E._.E}dl

///, (. :-,)+ E- koZoJ' + X-- × i_ . M' d/

+ jkoZo [[ E-(H x fi)dS;
rids o+$1

where _r and _r denote the relative tensor constilutive parameters of the cavil\

medium. Z0 and 1% are the free space impedance and propagation constant, respec-

tively, _c,'0 represents the aperture (or slots) excluding the metallic portions and Y,':

denotes the junction opening to the guided feeding structures. Also. I _ is the volume

occupied by the source(s) (J' or M i) and H is the corresponding magnetic field on

So and SI whose outer normal is given by ft. As before, the explicit knowledge of H

in (5.1) is required over the surface So and S: (also referred to as mesh truncation

surfaces) for a unique solution of G. Specifically, the magnetic field H over .-q0may be

replaced in terms of E via a boundary integral (BI) or absorbing boundary condition

(ABC), whereas H on S.f is determined on the basis of the given feeding structure.

This version of the functional as compared to (3.1) allows an easy inclusion of various

feed models, such as aperture coupled slot, coax cable, etc. (see chapter 6 for details).

In this chapter since we concentrate on improving the FEM efficiency, therefore the

boundary integral method will be employed as in chapter 3. It will be seen that this

implementation indeed meets the accuracy need without extra CPU burden. In the

context of the FE-BI. H is represented by the integral

H H "° + 2jko}o f/- '= Go(r,r ). (_ x E(r')) ds' (5.2)
JJS 0

where G is the electric dyadic Green's function of the first kind such that h x G = 0 is

satisfied on the (planar. spherical or cylindrical) metallic platform (refer to chapter 1 ).
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l"or tho antonna pvol,lem shown iri rio_. 7).1 wll('rc tt)(' l)l.tf_)rlll i>- ,_ i)).tiar ,'t_,utl_t

plane. G becomes the half space dvadic (;leell's fullctioll

G = i+ VV 4=[r-r' l" t.5.3)

with r and r' being the observation and integration points, respeclive]y, and ] =

.i'.i' + gg + .5_ is the unit dvad. In connection with our problem, i.e. that of a (a\i_v

recessed in a ground p]ane. H a° is equal to the sum of the incidenl and retle('_od

fields for scattering computations, or zero for antenna parameter evaluations.

To discretize the functional (5.1), we choose to subdivide the volume region using

prismatic elements as shown in fig. 5.2 and fig. 5.3, The field in each of the prisms

can be approximated using the linear edge-based expansion [49-51]

9

Z gv; =
j=l

where[V], = [{14},{t';}, {l_';}],and {E *} = {E_,E_ ..... E;} T. The vectors {I_},_, =

x, Y, z, are of dimension ra = 9 and they simply' represent the x, y, z components of

V_ associated with the jth edge of the eth element. Since V_ are chosen to be edge-

based functions, the unknown coefficients E._ represent the average field along the

jth edge of the eth element. A corresponding representation for the aperture fields

is

3

E(r) = S (r) =
i=l

where IS], = [_5':_,Sy], and V(r) reduces to S*(r) when the position vector is on the

slot.

To generate the discrete system for E_, (5.4) and (5.5) are substituted into (5.1)

and subsequently F(E) is differentiated with respect to each unknown E_. \Vith the



Figure 5.2: Illustration of tessellationusing prisms
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= +  li," 1- I..'}=()
_=l ,=l _=l ,_
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where the sums are over the total number of volt, hi<' or surfa((' ¢']cll,'nts. li) t}li,,, th<'

matrix elements are given by

A,} = yr x V,-p_ -Y" x V a- • .

]-\.ie jl¢oSo/il V . [j i _--1 ] ,,t" (:)._)
= +V xl_ , .V x M' " •

B'°" ---/L,/L, 2ka°S_(r) " S_(r')G°(r'r')d'_d'_'

+2/L iL [V × S:(r)]:[V' × S,_(r')]=Go(r.r')dsd,,'

L_ = 2jkoZo iL _'q_ " (Hi x _)ds

(,_.n)

(5.1o)

where the subscript z in Bi_ denotes to take the z component. It is noted that L_

is removed in case of radiation problems and that the same holds for h'7 when the

scattering problem is considered.

5.3 Edge-Based Prismatic Elements

Consider the right angled prism shown in fig. 5.3 whose vertical (z-directed) sides

are parallel (right-angled prism). We now design two geometric quantities as

hi = _,- : x (r- ri) q:_ /-'h.. , _, = (.5.11)
9 'l

where ri denotes the location of the ith node, gi is the unit vector along the ith

triangular edge opposite to the ith node, li denotes the length of this edge and r

is any position vector terminated inside the triangle. One wav to obtain an edge-

based field representation for the prism is to utilize the nodal basis functions [52]
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and t l,en app]y _],_. proc_.dure di-cus_ed in [-19.53.51. ]]o_vvvcr. all ;t]t,.rllali\_.al.]

more physically meaningful approach ca_l I,e elnl,h,yed for ill, _ Ct,lIMI'llCli_II _,t'_Iw

edge elements, t{eferring to fig..5.2, it is evideEll lhal if r i- ill ltl,' x v t,lan,,, t],,'ll

S,_e in (.5.11) gives the area of another triangle 12'3' such that the lengths of e<tge.,

joining the nodes :2 - 3 and 2' - 3' are equal. \Vilh this definition of r. we define a

vector a vector

ll A

Si = _z × (r- r,) (5.12)
2S _

where _,. S, = _7" That is. the vector component along t', has a magnitude which

is equal to the ratio of the areas of the triangle 12'3' to that of 123. We observe

that (5.12) is simply, the edge-based expansion for the triangular elements [32] and

is the appropriate expansion to be used in (5.5). The corresponding volumetric basis

functions can be obtained by inspection, viz.

V, - (:-'YZ)Si i= 1._,') 3
:hz

Vs = (z_+Az--Z)si j=4 5.6 (5.13)

Vk = _.¢k k = 7,8,9

where _k is the triangle simplex coordinate associated with the kth prism vertex at

(Xk, yk). As illustrated in fig. 5.3, z_ and h = Az represent the offset coordinate and

the prism height, respectively. When (5.13) are substituted into (5.7), the resulting

integrals can be evaluated in closed form as given in the Appendix C. However,

the integrals resulting from the substitution of (5.12) into (5.9) must be carried out

numerically', except the self-cells which can be performed analytically as discussed

by Wilton [55].
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5.4 Applications

Thin slot antenna structures [lave been treated u_iI_g the al,ovc formulated [:I( I_l

technique and certain modeling results will be presented ill thi_ sectioll to delmm-

strate the validity and capability of the approach.

Radiation and scattering by an Annular Slot:

To evaluate the accuracy and efl:iciencv of the prismatic mesh and the afore-

mentioned implementation, we first consider the analysis of the narrow annular slot

(0.75cm wide) shown in fig. 5.4. The slot is backed by a metallic circular cavity 2-1.7

cm in diameter and 3 cm deep. The FE-BI method is quite attractive for this ge-

ometry because the slot is very narrow and most of the computational requirements

are shifted on the finite element portion of the system. The calculation shown in

fig. 5.5 were carried out using the prismatic and tetrahedral elements [29]. As seen.

they overlay each other. However, only 1024 prisms were needed for modeling the

cavity, whereas the number of the tetrahedral elements for this homogeneously filled

cavity were 2898 for acceptable element distortion. If a multi-layered structure was

considered, or a similar system condition was used as a criterion for mesh generation.

then much more tetrahedrals than prisms would be needed for modeling such a struc-

ture. Moreover, the prismatic mesh is trivially generated given the slot outline. In

contrast, substantial time investment is required for generating and post-processing

the tetrahedral mesh.

Frequency Selective Surfaces:

Frequency selective surfaces (FSS) structures [56,57] are arrays of tightly packed

periodic elements which are typically sandwiched between dielectric layers. The

periodic elements may be of printed form or slot configurations designed to resonate



a=l 2.35 cm

b=0.75 cm

po= 7.7 cm

0.7<f<lGHz

°.3cm_L[ 3s j
FigureS.4: Geometry of the annular slot antenna backed by a cavity 23.7 cm in

diameter and 3 cm deep

at specific frequencies. As such, they are penetrable around the element resonances

and become completely reflecting at other frequencies. To meet bandwidth design

specifications, stacked element arrays may be used in conjunction with dielectric

layer loading.

Here we shall consider the analysis of FSS structures (with slot elements) via

the FE-BI method. Because of the fine geometrical detail associated with the FSS

surface, the finite element method has yet to be applied for the characterization of

FSS structures, but use of prismatic elements makes this a much easier task. Of

particular interest in FSS design is the determination of the transmission coefficient

as a function of frequency, and since the array is periodic, it suffices to consider a

single cell of the FSS. For computing the transmission coefficient T, the periodic cell

is placed in a cavity as shown in fig. 5.6 and the structure is excited by a plane wave

impinging at normal incidence. Assuming that near resonance the wave transmitted

through the FSS screen will retain its TEM character, the transmission line concept

can be used to find the scattered field

o T 2
E$ m

1 -oR
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Figure 5.5: Scattering: Bistatic (co-pol) RCS patterns computed using the tetrahe-

dral FE-BI code and the prismatic FE-BI code. The normally incident

plane wave is polarized along the ¢ = 0 plane and the observation cut

is perpendicular to that plane. Radiation: X-pol and Co-pol radiation

patterns in the ¢ = 0 plane from the annular slot antenna shown in

fig. 5.4. The solid lines are computed using the tetrahedral FE-BI code

whereas the dotted lines are computed using tile prismatic FE-BI code.

The excitation probe is placed at the point (y=0) marked in fig. 5.4.
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Figure 5.6: Illustration of the setup for computing the FSS transmission coefficient

Upper figure: periodic element (top view); Lower figure: periodic element

in cavity (cross-sectional view)



where 7 is Ill(' Iransn_i-_.ion cocfficienl of tlw }:S_. H = 1 - / azl_t ,_ i> 1}.. r,'lh,,-

tion coef[icient associaled wilh lh(' cavilv base. To reduce' lt_' I,_ullil_lc iI_T_'I.Lcli_,t,-

within the cavity, it is appropriate to terminale the cavit\ witt_ sonw al,>,,vl,,,1, tl_-

reducing the value of o to less than 0.1. Since/1' is also small m'av res¢mall<v, a g¢,t,d

approximation for T is

E*
r¢°) lOlog --
* dB -_ O

and upon considering the next higher order cavity interactions, we have

rio) [1 a(1 -- T ImTds re.as +lOl°g -- )].

A more direct and traditional computation of Tds would involve the placement of

the FSS element in a thick slot [58]. However, this requires enforcement of the

boundary' integral over the entire lower surface of the slot, leading to a much more

computationally intensive implementation.

The above FSS modeling approach was applied for a characterization of single

layer and multi-layer FSS structures. In both cases, the periodic element was a slot

configuration. The geometry of the single layer periodic element is shown in fig. 5.6

and consists of a planar slot. array on a dielectric layer 0.0762 cm thick and having

e_ = 4.5. The FE-BI calculation using prismatic elements is given in fig. 5.7. Clearly,

our calculations are in good agreement with the measurements and data based on

the more traditional method of moments [59, 60].

The geometry of the multilayer radome considered in our study is given in fig. 5.8.

The total thickness of the FSS was 6.3072 cm and is comprised of two slot arrays (of

the same geometry) sandwiched within the dielectric layers. For modeling purpose,

a 1.54cm thick absorber is placed below the FSS as shown in fig 5.8. From the
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Figure 5.7: Calculations and comparisons of transmission through the FSS structure

shown in fig. 5.6

calculated results, it is seen that the results generated by the FE-BI method are in

good agreement with the measurements.

Radiation Property study of Conformal Slot Spiral Antenna:

Consider a typical Archemidean slot-spiral antenna shown in fig. 5.9. This an-

tenna is built on a double-sided PCB with its two arms following the expression:

r = aO + 'fl, where o = 0.1333cm and/3 = 2.8595cm. One arm can be determined

from the other by rotating 180 ° counterclockwisely. It is noted that this structure

differs from the conventional design in that the central portion of the spiral is not

fabricated. The reasoning for it relies on the facts that the antenna is designed with

a bandwidth less than 30%, and that the central portion usually requires a careful

fabrication because of the geometric details, and still that the central space may be

used for possibly complex feed network. One of our goal is to study the effect of this
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(FSS) used for modeling; lower figure: measured and calculated trans-

mission coefficient through the FSS structure
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spiral shal)con it- performance.

A benchmark t('s) model is d('<ignatedto Ol)(,ral(,fron) l Is ._llll I(, I.')7 .kill,,.

to replace tile conventionalprotruding blade an/('nua. Th(' siz(' how(,v('r i_.lllll('}l

compact with its conformalitv property. Our simulation model i.- .-cal¢'d I)v 1.', t_,

operate at 944MHz to 1256.MHz with the center frequency 1100.MHz. Th(' value_ of

o and 3 above were determined based on this frequency band and also the zlunil)(,r

of turns (4.5). The cavity is filled with a dielectric slab (_ = 2.2) of 0.3 cm del)th.

corresponding to approximately 0.011 free space wavelength at the center frequency.

The antenna's directivity is analyzed from the radiated pattern at lower, center and

higher frequencies and the results are tabulated in Table 5.1.

Figure 5.10 - 5.12 show the radiation patterns for frequency 944, 1100 and 1256

MHz, respectively. The Eo and E¢ at the principle plane 0 = 90 ° are plotted. It

is understood that when the frequency varies, the active region travels along the

slot spiral. Thus the principle plane may not be coincident with the E-plane. (In

fact, the E-plane is not clearly defined in this case.) The optimum axial ratio fox.

the three cases are tabulated also in Table 5.1, and it shows that the spiral shape

design really plays an important role to insure a good quality radiation pattern. At

both center and lower frequencies, less than 3 dB AR has been achieved. When the

frequency increases, the active region moves inwards to the center and becomes closer

to the feeds where the EM fields exhibit a comparatively strong profile. The radiated

pattern therefore is most likely affected and this explains why the AR increases at

the high frequency. The AR deterioration can be avoided by adding a couple of spiral

turns inside. It is seen, nevertheless, that a CP mode can be achieved within the

entire designated bandwidth and with a wide azimuthal angle (as wide as 60 ° in the

optimum case). In practice, we notice that absorbing materials may be needed lo



regulate the magnelic current_ al llle [,_,oillililt_ or elJd- _f the'-It_t -tfiral. _'-I_'_ i,_lt_

when the number of _urns is minin_ized.

]"requellcy ((',|lz) 0.9-t4 [ 1.100 ! 1.23{i :
(lain (dB) -"') i 6.66I_._, = "" '

,-\xial Ratio (dB) 2.7 l.(I ::l

Table 5.1 ('omparisons of gain and axial ratio at different operating frequencie,-

5.5 Concluding Remarks

A hybrid finite element-boundary integral (FE-BI) formulation was presell_ed

for modeling narrow slots in metal backed cavities. Prismatic elements were used

in connection with the FE-BI implementation, and in contrast to the tetrahedral

elements, these offer several advantages. Among them, low sampling rates are needed

for generating meshes and the mesh generation process is substantially simplified.

Other advantages of the prismatic elements over the tetrahedral elements include

better system conditions and faster pre/post data processing.

The explicit expressions for FE-BI implementation of prismatic elements were

tabulated and numerical results for slot antennas and frequency selective surfaces

were presented to demonstrate the validity and capability of the technique.
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Figure 5.9: Illustration of a typical 2-arm slot-spiral design
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Figure 5.10: Radiation Pattern at f=l.lGHz (center frequency design). A good axial

ratio is achieved up to 60 ° degree.
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FigureS.1l: Radiation Pattern at f=0.944GHz (lower end of frequency range). It

can be seen that the axial ratio of the pattern becomes larger compared

to that at the center frequency, but still remains within 3dB for a wide

angle range. This indicates that the number of the outer turns in the

spiral contour design is most likely sufficient.
frequency=1.256 GHz

i
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Figure 5.12: Radiation Pattern at f=l.256GHz (higher end of frequency range). It

can be seen that the axial ratio of the pattern is deteriorated compared

to those at the center frequency and lower frequency. This certainly

shows that the number of inner loops still needs to be increased to

insure a good quality pattern.



CHAPTER VI

Antenna Feed Modeling

For scattering problems where the plane wave incidence is usually considered as

the 'source', the right-hand-side excitation has been explicitly expressed in (3.7) and

(5.10) and will not be discussed further. However, for antenna impedance evaluations.

we have proposed and reported several feeding schemes [61] associated with various

practical feed designs for microstrip antennas. Some of these are discussed below.

6.1 Probe Feed

6.1.1 Simple Probe Feed

For thin substrates the coaxial cable feed may be simplified as a thin current

filament of length l carrying an electric current I[. Since this filament is located

inside the cavity', the first term of the integral in (3.7) needs to be considered for this

model. Specifically', the ith (global) entry of the excitation vector Ki becomes

hi = jkoZoI 1. V;(r), i = j, ,j2, ...,jm

where r is the location of the filament, rn is the number of (non-metallic) element

edges and jm is the global edge numbering index. In general, m such entries are

associated with m element edges, and thus the index i goes from jl up to j,,. This

98



expre._sion call b_. further reduced lo E, = jlq,Z.l I. l_r_,vid,'d l}lal I}." Illl _'*tt,' i.

coincident with the current filamelll.

6.1.2 Voltage Gap Feed

This excitation is also referred to as a gap 9_ncvalor and amounts to .-t_ecifyiilg ,

priori the electric voltage 1 across the opening of the coax cable or any olher gap.

Since I' = E • el. where (.] is a vector whose magnitude is the gap width, and E lhe

I

electric field across the gap. we have that Ei - dcosO," where cosO, is equal Io 1 if the

ith edge is parallel to d. Numerically. this gap voltage model can be realized by tirs_

setting the diagonal term Aii equal to unity and the off-diagonal terms .4, (i ¢ j)

to zero. For the right-hand-side vector, only the entry corresponding to the ith

(global) edge across the gap is specified and set equal to the value E, whereas all

other entries associated with edges not in the gap are set to zero.

6.2 Aperture-coupled Microstrip Model

As shown in fig. 6.1, when the microstrip antenna is fed with a microstrip line

network underneath the ground plane (cavity's base) via a coupling aperture, special

treatment of the feed structure must be considered in the FEM formulation. This

is because the microstrip line is usually designed to have different size and shape as

compared to the cavity's geometries. Hence, the conventional simulation of treating

the entire 3-D domain using a single type of elements is not efficient or appropriate

for this feed.

Referring to fig. 6.1, it is appropriate to separate the computational domains

because of the small element size required in modeling the guided feed structure.

One difficulty encountered when this decomposition is implemented is how to model

the coupling through the aperture. As an example let us consider a rectangular
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aw'rlure which ha> I..<,n extensively elnl,luvecl itl l,ractic< 1 ll_' cavitx t_'hl- rll,_\ I.,

(li._cretized using t etrahe(lral eh'nl<,l_t>, wh_.rea, it_ the, l_licro_lrit, lit.' r_'_i_,l_ t,'_t,tlL

gular bricks are the be_t candidate, since tlk_. fc_'d >trttcttn_. i+,, t+_'ctatl_nlar if, >llal,'

and the substrate is of constant thicktless. :\Ithottgh l,otlt tyl..> of ('h'tll_'tlt.. _,ttlldoy
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Figure6.1" Cross-section of an aperture coupled patch antenna, showing the cavity

region I and the microstrip line region II for two different FEM compu-
tation domains.

t J
(a)

I I I l
(b) (c)

Figure 6.2: slot and its discretization (a) slot aperture; (b) typical mesh from cavity

region; (c) uniform mesh from microstrip line region.

edge-based field expansions, the meshes across the common area (coupling aperture)

are different, and this causes difficulty, in enforcing field continuity' across the slot

aperture. However, since the aperture is very narrow, a 'static' field distribution

mav be assumed at any' given frequency. Therefore. the potential concept may be

again applied to relate the fields below and above the aperture. Specifically. the
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"eqtti potential" continuitv condition i>.etiforc<'d,at_tltt, t,t+t,c<'cdtt, tit,>t,. I,'t tl>.lit-t

classifv the slot edgo: as follows

Tetrahedral Mesh (Cavity Region I):

• E_ 1 j = 1.2.3 .... verticaledges

• E_ 2 j = 1.2.3 .... diagonal edges

Brick Mesh (Feed Region II):

• E_ j = 1,2.3 .... vertical edges

Then the 'equi-potential' continuity condition requires that

in which

= ,jE (6.1)

Eb 2 t c= (6.2)

+I
_:j =

--1

whereas t and d are the lengths of the vertical and diagonal edges, respectively.

That is, t is simply the width of the narrow rectangular aperture. The coefficient _

is equal to +1 depending on the sign conventions associated with the meshes above

and below the coupling aperture.

The connectivity scheme for entirely different computational domains max" be

extended by generalizing this concept. It is apparent that this approach makes

the FEM implementation straightforward for different geometry/size domains that

would be significantly inefficient if only one type of elements were used for modeling

the structure. In addition, the technique ensures a good system condition since the

number of distorted elements in the mesh are minimized.
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6.3 Coax Cable Feed

6.3.1 Motivation

The coax cable is widely used as a h'ecting struclure h_l nlicrt_:tril, or ca\i_x-

backed patch anlennas because of its simpliciu and low spuriou,- radiation, ln¢lec¢l.

abundant literature exists on the theoretical and experimental investigation of coax

cable feeds [62-64]. Most of these papers t)resent integral equation tec]mique,_ in

conjunction with the pertinent Green's functions. However, the (;teen's funclion is

only available for a certain class of geometries, and this limits the application of

the integral techniques to those geometry designs. Also, the formulation must be

modified and recoded for different antenna configurations corresponding to Green's

function variations. To avoid the complexity' of the Green's function, we recently

proposed a hybrid finite element - boundary integral approach [29] which is described

in chapter 3 and 4. For antenna radiation, it is observed that. a simple probe model

with a constant current along the inner conductor linking the grounded base to the

antenna element is straightforward and efficient. But the probe feed is only valid

for thin substrates and this is consistent with the Moment Method (MM) results.

To model an electrically thick substrate, in this section a more sophisticated feed

modeling scheme is proposed in the context of the finite element method (FEM)

using linear edge-based tetrahedral elements. The formulation of the entire hybrid

numerical system will be first described in the presence of the necessary functional

term for feedline. The proposed feed model is then presented on the basis of a TEM

mode excitation. Model improvements are also discussed for the case when the TEM

assumption at the cavity-cable junction does not hold.
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6.3.2 Hybrid FE-BI System

The functional pertinen! to t}w radiatiozl [,v a caxitx-back,.d i,7_t_.tlz_i, wilh ;_ c_,_x

cable feed (as shown in fig.

F(E)

--/% (E x _:)- ,(E

-jkoZo [f(E x H) • ._dS',
JJc

6.3) is given by

× E)-I(V × E)-k_E.E} dc

(1)× i +  .=vv r. r')d.q"}
d .'4

((i.3)

where V refers to the cavity volume and the surface S encompasses the cavity aperl ure

excluding the portion occupied by the metallic antenna elements: ¢_ and t_ denote.

respectively, the relative permittivity and permeability; k0 is the free space wave

number, Z0 is the free space intrinsic wave impedance. I is the unit dyad. and

G0(r, r') is the free space Green's function with r and r' denoting the observation

and integration points; the surface C is the cross section of the coax cable at the

cavity-cable junction.

Following the standard discretization procedure [29], we obtain a system of equa-

tions of the form

N_ Us_ Nc_ OFc(E, H)

Z {[A'5]{E-7} } + Z {[BiS]{E;}} + Z OEi -0, (6.4)
e=l e_.S eEC

where the explicit expressions for Aij and Bij may be found in [29] and the functional

term Fc is the surface integral on C in (6.3).

6.3.3 Proposed Coax Feed Model

To proceed with the evaluation of

Fc = -jhoZo /fc(E x H) • 5. dS, (6.5)



a boundary con_,train_ rela_in_ E Io H i.. J,_','ch'd. "]o t],i- cl,_t, w_,,,..uIll,,,_ ]llXl

n,odeoll (' and consequently lhe field> wiTllill tt,,' ci, vi_v lira\ I,,' cxl,rc>-,'d a> ,-,','

fi_. 6.4 )

E- loZo 1+F)1-?. H = I°(1-I'_-o, (ii.t;i
2rr _7_c r 27 r

where (_ is the relative permlttivitv inside the coax cable: g dela)l('s thv relh'clion

coefficient measured at z = 0 and I0 is the given input curren! source al the sanlv

location. Also. (r.o.z) are the polar coordinales of a point in the cable wilh lhc

center at r = 0. To simpli_" the analysis, we introduce the qnanlities

IoZo 10

e0- 2_-_-/_ (1 + F), ho = :Z_(1- F). (6.7)

Hence,

and from (6.7) it follows

eO ^ h0 -

E=--r, H=--o, (6.8)
F r

,e/g7 I0

ho- " -Co+--, (6.9)
Z0

which is the desired constraint at the cable junction in terms of the new quantities

ho and Co. Note that e0 and h0 are field coefficients as new unknowns in place of the

fields IS and H, and it is therefore appropriate to rewrite Fc in terms of these new

coefficients. To do so, we substitute (6.7) and (6.9) into (6.._5) and upon making use

of the axisvmmetric field property we obtain

vc = -2,,jkoZo oh;W,,( ), (6.1o)
(/

where a and b are the radii of the inner and outer cable conductors. The superscript

src stands to indicate that h0 is treated as a source term in the extremization of the

functional.



I(l'l

XVe choose the linear edge-based tmrahedral elcilwn_- _ _ti_ctcli:_' tl,c ,,_vil\

and Ill(' corresponding mesh on tlw cross s('<tioll (' i, sl,own 1_ Jig. i;.t_},_. I1_ l}li-

fornmlation, the field across the t/_ edge. p=l.2 ...... Vc (.\c is lhc nulnt,erof ca\ilv

mesh edges on ('). is set to a constant as dictated by the linear edge-l,ased CXl)al>ion

function inside the cavity. However. the cable TE.M modal fiel<ts t(;.(i) bohave as

1/r and this modeling inconsistency makes it difficult to apply the tangential tield

continuity condition at the cable junction ( i.e. over the aperture ('). "I"o overcome

these difficulties, we can relate the fields across the cable junction by recognizing that

the potential difference between the inner and outer conductors inust be the same

as computed bv the fields of the cavity or those in the cable region. Specifically.

if the 5_th edge of the cavity region borders and is also across the coax cable, fi'om
a p

(6.6)-(6.8) it then follows that the appropriate equi-potential condition is

AV= Ei(b-a)= eoln b, i= Np(p= 1,2 ..... Nc). 6.11)
a

where AV denotes the potential difference between the inner and outer surface of the

cable. This condition simply' provides a relation between the constant cavity edge

field and the coax cable modal field. When used into the functional Fc, it introduces

the excitation into the hybrid finite element system without a need to extend the

mesh inside the cable or to employ a fictitious current probe. It remains to rewrite

Fc in terms of Ei, i.e. the field value of the edges bordering the cable and to do so

we substitute (6.9) and (6.11) into (6.10). Then upon taking into account all Nc

cavity mesh edges on the cable junction, we obtain

-aJk0Z0(b-o){ src Nc
Io vYgTb-aEi E Ei. (6.12)
re Zo In b_

a i=Np

In this expression, rather than representing the functional Fc in terms of a single edge

field, we made use of the average field across the cable as computed by the totality



of tile equal ele.wnt field_ oil the cabh.'._ at_ert_lr_ , ,I,_'ca_l>,. _,f tl,c aXi_vlllltlt'tri,

properly, all elenwnt, fields at the cabh"_ aperture' at,' _'qual !. Ill,' tact,t it_,,i,l,,

the curly brackels of i6.12), with the superscript .-q'c. functioll.- a_ a _,ourct' ilk 1l,'

extremization process. Hence. the extremization of (6.12! viel(l._

1 I, /OE, - 3"zjkoZo(b- a) = Zu I,_ E,

= (,E,- li. i=.\'v(p= 1.2 ..... \c). (6.13)

where

1 (b - a) 2 (6.14

fl

1

1; = jskoZo(b- a)Io. (6.15

We observe that the 'constant cavity field' along each mesh edge at the cable junc-

tion is just a fictitious field representation and its meaningful physical interpretation

is governed by the equi-potential constraint (6.11). To proceed, we assemble the

FEM system together with (6.13). Specifically, each/7, is added to the Nc diagonal

entries of the finite element matrix which is associated with the Arc. edges bordering

the coax cable. Also, the excitation column of the hybrid system is nullified every-

where except for the Nc entries which are set to t'i. Once the hybrid FE-BI system

is solved [29], the input admittance at z=0 is calculated from

I f}'+_ - to H . £ rdo
7T

210 1

- eoln_ Zc" (6.16)

where Z_ is the characteristic impedance of the coax cable.

In the above feed model we assumed the presence of only the dominant(TEM)

mode at the cavity-cable junction, an assumption which may not be suitable for
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certairl alq)licatiolls. ]o OVel'COl]]e lhi> ii|]li[_tTit)II, t)II(' it])l)lt)it(tl i', lt, t'xl_,'lltt _llt'

rnesh (say. a distance d) into tile cable. The' ,,qui-l)olcntia] cotMitit,ii will t l_,.ll t.,

applied at z=-d. where all higher order nlodc_ vanish. Thi.- .,.ClWlll,' r,'(tlliIo- a lllt)l,'

suitable expansion for the fields in the -d < -- < 0 seclion to avoid the con_l,licalion

of extending the tetrahedral mesh into the cable and. thus. retain lhe ellicicncx of_lw

equi-potential feed model. Since in most cases the antenna is operated lit a frequency

range far below the cut-off of the first higher order mode of tile coax caleb', tlw field

distribution near the junction (7 will still be dominated by the fundamental I'I_XI

mode. With this understanding, a possible suitable expansion for tile field in the

coax cable (using shell elements rather than tetrahedrals) is

4 *

E= Z Z E;Nv(r'°'Z)r ' (6.17)
q i

where q=r, 0 or z, i=1.2,3 or 4 and N;(r, 0, z) is the shape function for each of tile

12 edges (3 directionsx 4 edges per direction). They are given by

N i _ gi
Aqb,__qc(qb -- g)(q_ -- g)gl_ (6.18)qa

with q_,qb and q_ representing r,_b and z in cyclic rotation and correspondingly

q_, q_band _'_ represent the parameters _-, 0 and 7. Also, i denotes the edge number

along each coordinate, and Aq= is the width of the edge along the 0_ direction. The

correspondence between the edge numbers and the node pairs for each coordinate(r, o

or z) is given in Table 6.1 along with the definition of the tilded parameters in (6.18).

When an axisymmetric field property is assumed, the numerator of the expansion in

(6.17) reduces to the standard brick element format for the radial and z components,

independent of the 0 variable. Note also that the particular property of this expan-

sion is the introduction of the 1/r factor, simulating the coaxial cable mode. The

accuracy of (6.17) is demonstrated in fig. 6..5. where we show that only 2-3 elements
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TABLE1

_.Jr,llH,_l,'- Ill,dr ' p,rlT d[ flt_l t'T-

q t pint- _ f ,:, .:

1 _1-2, - o: - Ac, :_ - A:

2 il-3, - ol -_ - -_:

i Ol 21iJ

Z_

..'" 02

Z

: i

". ! "- -_ ...... i

J

Table 6.1: The correspondence between the edge numl)ers and the node pairs for each

coordinate(r, o or z) along with the definition of the tilded parameters in

(6.18).

are needed along the radial direction for the accurate prediction of the dominant

field distribution. When compared to the conventional linear tetrahedral elements,

the efficiency of this expansion is apparent (i.e.. many more tetrahedrals are needed

to model the same cable region).

6.3.4 Results and Conclusion

To validate our proposed feed simulation, two circular patch antenna configura-

tions were used for calculation. One patch antenna was of radius 1.3 cm printed

atop of a circular cavity (radius=2.1 cm) filled with a dielectric (e,=2.9) material

0.41 cm deep. For this patch, the feed was placed 0.8 cm from the center and the

input impedance was measured over the band 2 - 5 GHz. In fig. 6.6 we compare the

measured input impedance with data computed on the basis of the proposed equi-

potential feed model. Clearly, the results from measurements and the equi-potential

model are in excellent agreement whereas the probe model yields substantially inac-

curate results near resonance.

Figure 6.7 shows the comparison between measurements and calculations for an-
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other palch anlenna who_,(' iIl])ul im[)(,dailc(' wa_, ill('a_l,r_'d t,\ .\t,_'_h' aI_,! Ik,/,_I 1;5.

"l-his patch had a radius of :2.0 cm and the 0.215 <hi tllick .-,ll,_,Ital,' Ila_t _.=2.:_:1 ,_l_t

a loss langent Ian_=0.0012. The feed was [ocaI(,d 0.7 cn_ frt)nl IIic c(,Iil(,r, a_ld t_)_

our FE-BI calculation the pa_ch was placed in a circular ca\'i_v of i_. t I ('lll ill radiu_,.

As shown in fig. 6.7, the equi-potential model is agai_l in excclh'Ht agrc('lll('tlt wit Ii

measurements, as opposed to the results by the probe model in [65].

In conclusion, the presented equi-potential feed mode] has }>eezl s]_owrl Io },('

extremely accurate in modeling coax feed structures. Moreover. its implenl('))I;)I i_,))

in the context of a finite element formulation is very simple and as easy to imph'm('nt

as the probe feed. It was also demonstrated how the proposed feed model can b(,

generalized to the case of asymmetric feed structures where evanescent modes may

be present.

6.4 Conclusion

In developing numerical techniques for antennas, the feed network is one of chal-

lenging problems to solve in consideration of accuracy, efiq.ciency and simplicity. This

is primarily because the antenna feed in fabrication has certain instrumental uncer-

tainties on one side. On the other, as aforementioned, the accuracy of numerical

results is usually extremely sensitive to the feed model, the feed location, sampling

rate around the feed point, and so on.

The proposed numerical feeds in this chapter resemble the practical systems as

closely as possible, and with a thorough consideration of their numerical implemen-

tations, we realize that they can be used for mostly encountered antenna problems.

As an addition to the group of feed models, we also developed a circuit modal feed

which coincides with domain truncations. Since this model has to do with microwave
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Figure 6.3: Illustration of a cavity-backed patch antenna with a coax cable feed.
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Figure 6.4: (a) Side view of a cavity-backed antenna with a coax cable feed: (b)

Illustration of the FEM mesh at the cavity-cable junction (the field is set

to zero at the center conductor surface).
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Figure 6.5: Field distribution in a shorted coax cable as computed by the finite ele-

ment method using the expansion (6.18). --: analytical; xxx: numerical.

(a) Field coefficient eo along the length of the cable (leftmost point is the

location of the short); (b) Field along the radial coordinate calculated at

a distance _/4 from the shorted termination.
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Figure 6.6: Measured and calculated input impedance for a cavity-backed circular

patch antenna having the following specifications: patch radius r= 13ram

cavity radius R=21.1mm; substrate thickness t=4.1mm; _=2.4; and feed

location x/=0.8 cm distance from center. Results based on the simple

probe model are also shown for comparison. Our modeling retains the

vertical wire connection to the patch and uses the incoming coaxial mode

field for excitation. (a) Real part; (b) Imaginary part.
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tan6=O.O012. [65]. --: measurement; xxx: this method; o o o: probe

model [65] (a) Real part; (b) Imaginary part.
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CHAPTER VII

Circuit Modeling

Many designs of microstrip antennas require certain feedlines to carry electx'omag-

netic signals from the source. Finite element methods are also suited and applicable

to these wave propagation problems. This chapter is devoted to circuit modeling.

After an overview of recent mesh termination techniques, we discuss a numerical

de-embedding process appropriate for the finite element analysis, and then turn to

the topic of mesh truncations for circuit simulation.

7.1 Introduction

One of the most important aspects of finite element implementations is the trun-

cation of the computational volume. An ideal truncation scheme must ensure that

outgoing waves are not reflected backwards at the mesh termination surface, i.e. the

mesh truncation scheme must simulate a surface which actually does not exist. To

date, a variety of non-reflecting or absorbing boundary conditions (ABCs) have been

employed for truncating the computational volume at some distance from the radi-

ating or scattering surface, and applications to microwave circuits and devices have

also been reported. The ABCs are typically second or higher order boundary condi-

tions and are applied at the mesh termination surface to truncate the computational

11,5



llt,

the oIle way wave equatiolj nwth_,(I [(i(;.(;7] aml _,zl¢,ll_,r i._ d_.r]x_,_l sl_r_ir,u _i',ll It_,.

Wilcox E×pansion [(;$.:_1]. Also. l_igher order .-\l_('_ u_i1_ lligdon_ iti_,.TtIit_,rl_lul,,-

tion and problenl specific numerical AB('s hav_' }>cell succ_'_sfu]lv u._'d, p_rli_ul_,rlv

for truncating meshes in guided structures [71]. There are several ditticul_i_,._ wi_h

traditional AB('s. Among them is accuracy control, conformali_v, eas_, of p_ralleliz_-

tion and implementation difficulties when dealing wil h higher order .-\B(_'._. Also. th__

applications of AB("s in microwave circuit modeling requires o prior; knowledge' <_t"

the propagation constants which are typically not available for high density packages.

An alternative to traditional ABCs is to employ an artificiM absorber for mesh

truncation. Basically, instead of an ABC, a _hin laver of absorbing material is used

t,o truncate the mesh. and the performance for a variety of such absorbers have been

considered [7'2_,7.3]. Nevertheless, these lossy-artificial absorbers (homogeneous or

not) s_ill exhibit a non-zero reflection at incidence angles away from normal. Re-

cently_ _hough, Berenger [74] introduced a new approach for modeling an artificial

absorber that is reflectionless a_ i_s interface for all incidence angles. In two dimen-

sions_ his approach requires _he spli_ting of the feld components involving normal

(_o _he boundary) derivatives and assigning _o each component a different conduc-

tivity. In this manner an Mditional degree of freedom is introduced that is chosen

_o simulate a reflectionless medium _ all incidence angles. Provided the medium

is lossy, this property is maintained for a finite thickness layer. Berenger refers to

the la_er _s a perfectly ma_ched l_yer(PML) and generMiza_ion of his idea _o _hree

dimensions have Mready been considered [7,5, 7G]. Also. implementations of the ab-

sorber for _runca_ing finite difference-time domain(FDTD) solutions has so far been

found highly successful. Nevertheless. it should be noted that Berenger's PML does
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nol salisfv Maxw(,ll equationsand canIlot }}c ca*itv inll,h'_llcntc<t ill ti_i_*' ,'l,'ll,c11_

( t: E.M solution.

.-\new anisoiropic(uniaxial)artificial absorber [771 was imroduccd rcccntl\ for

truncating FEM meshes. This artificial absorber is also r('O('ct ionless al all il_cidcncc

angles. Basically. by making appropriate choices for t he constit ulive t>arame!er t_'l_-

sors. the medium impedance can be made independent of frequency, polarization.

and wave incidence angle. A PML layer can then be constructed by introducing suf-

ficient loss in the material properties. The implelnentation of this artificial absorber

for truncating finite element meshes is straightforward and. moreover, the absorber

is Maxwellian.

7.2 Numerical De-embedding

De-embedding presented here is a numerical process used to extract certain circuit

quantities. Specifically, we are interested in S-parameters for a uniform transmission

line terminated with any loads denoting the possible discontinuities, which may arise

from line-to-line or line-to-antenna couplings. The dominant transmission line mode

is assumed at and near a reference plane 5'_j" in this discussion.

Consider a transmission line of certain length as shown in fig. 7.1. With an

appropriate shielding scheme, the line is included in the computational domain. The

full wave analysis provides the E field distribution anywhere including the region

along the line. One is therefore able to represent E field along the transmission line

with respect to the locations to get

(7.])

where V is proportional to the magnitude of E with I; being the incoming and _;

the reflected wave amplitude, z is measured from the reference plane ,q'_j.. _,. is the
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Figure 7.1: Illustration of a shielded microstrip line.

propagation constant to be determined and R = _/Ii is tile reflection coefficient.

or S11-

Since in (7.1) "t, ti and I/_ are three independent quantities that characterize the

wave propagation and reflection, to determine them one needs to specie" the field

values for l,"(z) at three points z_, z0 and z+ of equal inter-distances

t'(__) v(_0) v(=+)

Z+ -- Z 0 _ 2,0 -- Z_ (7.2)

along the line. To simplify the problem, we choose the reference plane right at the

center point such that z0 = 0 and z+ = -z_ = d. Given the three field values from

FEM computations, it follows

V(d) = l'ie -'_d + i_e "_d (7.3)

t,'(o) = t'i + t.; (7.4)

V(-d) = _';e _d + l"_e -"d (7.5)

To soh, e for _, we first add (7.3) to (7.5) to get



lherJ olin_inating Ii-4- I; from 17.4_ and (7.(;i. we (,blaill

I(d)-r 1l-d!
cosh(':d, = i7.7

21 (0_

from which -,. can be determined. Tile effective guided waveh,nglh A:: and ct[cclivc

dielectric constant 6_fJ may then be calculated by

"2r,
Ag -

3

with ,'3 = lm {')} and Ao being the free space wavelength.

and I;- are expressed as

From(7.3) and (7.-1), _,i

V(0)e _d -- V(d)
t, = (7.s)

2 sinh('yd)

t,; = v(0) - (7.9)

Therefore, the reflection coefficient becomes

$11 = _ (7.10)
t'i

This de-embedding process is suited for one port network analysis. However.

the technique may be readily extended to two-port networks. For instance, on the

assumption of a perfect termination or match at port 2, once l.'} is determined. <c,'21

can be obtained by' _o/Vi, where 1/o is the outgoing wave at port 2 predicted by FEM.

As mentioned before, S-parameter evaluations depend on termination methods.

Low quality terminations result in prediction errors and make the analysis less reli-

able. Therefore, high performance termination methods are always desirable and we

next discuss this issue.



7.3 Truncation Using DMT

As already indicated. S-parameters front a possil,h, ctisccmlilmilv r,'git,xl atoI,_ a

transmission line may be extracted at a distain referenccldalw, wlwrc llwrc cxist..

only a dominant mode. For shielded microstrip lines at rite input port (#1) aim

output port (#2). (similar to that in fig. 7.1). the modes underneath the lines are

given by

{ Eo(.r)(e-"'-" + Re"':) - E .':,',,,E_(z) = )o _: (7.1])T Eo(.r - - E 2"o_,t

where Eo(x) denotes the field distribution of incident wave at the incident plane

(port 1) and R is the reflection coefficient at the same plane. T represents the trans-

mission coefficient measured at the plane So_,t (port 2). and 51. "),2 are the effective

propagation constants at port 1 and port 2, respectively.

For truncating the FEM mesh at a specific port. it is necessary to first determine

the FI, field pattern across the shielded structure. This can be accomplished by

assuming a static model shown in fig. 7.2, where the static potential satisfies

V20 = 0

¢ = Vo on metallic line (7.12)

where E = -V¢. Sove this standard PDE model, and with a tedious mathematical

derivation, it is finally found that

¢

=

[ En=I ,odd

'/27/"

sinh ( _ d) (7.13 )

A"sinh( "_/b-7,_ d))COS(_ax)sinh(n--_-_(b-y)) z<d

where

.*.i n

( Yl Tf tP _
sin \ '_-_a / 1

= I'b
.2A F
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Figure 7.2: Illustration of the cross section of a shielded microstrip lii_e.

-¢1

G
fn = {r2

7271"

7"/71"

-t- _rlCOSh (-_-d)

cosh --a--(b- d))

A complete FEM system may nov,, be constructed by introducing the EM fields

at fii,_ to truncate the computational domain. This truncation simultaneously in-

troduces an excitation to the numerical system and the S-parameters may then be

extracted bv measuring the field distributions at the input and output ports as men-

tioned before.

7.4 Truncation Using PML

Below, we begin with a brief presentation of the artificial absorber, and this is

followed by an examination of the absorber's performance in terminating guided

structures and volume meshes in scattering problems. Results are presented which

show the absorber's performance as a function of thickness/frequency and for differ-

ent loss factors.
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7.4.1 Theory

('onsider the wavegui(h,,shiel(I,.dnli('roslri t, lin(' ai_(1>(allcrcr _t_,wl_ill ti,_. 7.:1.

Of interest is to mode] the wave propagation in t}u,-,(..-,lrucl_lr(,- ll.,,ill_ I}_, fl]lil('
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Probe
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(a). waveguide
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d+t=40cm t=5cm
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W

Absorbing layer
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t,= _r \ h" ] d+t=12.0cm
p,I---

H L = 2.38 cm

h = 0.21 cm

, H = 1.06 cm
I .

d -- - _" t "- e = 3.2 w = 0.548 cm

(b). Microstrip Line

Figure 7.3: A rectangular waveguide (a) and a microstrip line (b) truncated using

the perfectly matched uniaxial absorbing layer.

element method. For a general uniaxial medium, the functional to be minimized is

._ _f VxE (_:1 V×E) 2== • • - ko¢_ • E. EdV

/ E x (_-1. V x E)- dS, (7.14)
,IS ,. + So,,t

in which _ and _ denote the permeability and permittivity tensors whereas E is the

total electric field in the medium. The surface integrals over S,_ and S'o_, must be

evaluated by introducing an independent boundary condition and the ABC serves

for this purpose but alternatively an absorbing laver may be used. An approach to

evaluate the performance of an absorbing layer for terminating the FE mesh is to
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extract the reflec[ioncoef[icientcomp_zled ii_ [lie pr_'_enc_' _,1 _h,' al,-_,_ I,ii_ I,_'_ _2-,',1

to t(,rminate the comtmtational (l(,lllain. ltl lhi_ slml\ xv,, (_,l_i(1,'l l t,_, t,_'t f_,rl_ata,'

of a thin uniaxial laver for termillating _lw FI2 nwsll ill a r_.ctang_llar wav_,gui,h'

and a microstrip line. Such a uniaxial laver was prol)o._,(l })v Sack- _t.al. [77i wl,,

considered the plane wave reflection from an anisotropic interfac,' (se,, |ig. 7..1 1. If

Figure

Region 1

Reflected _a_e

[,001Incldenl

0 0 _ C_
wave

¥ Z

Regton 2

TrznsrllJtled _:_e

a.

b,O

7.4: Plane wave incidence on an interface between two diagonally anisotropic

half-spaces.

ff_ and _ are the relative constitutive parameter tensors of the form

: /a00/_=_= 0 be 0 (7.15)

0 0 c_

the TE and TM reflection coefficients at the interface (assuming free space as the

background material) become

R TE _._

R TM ___

cosOi- V/-_cosOt

cosOi + V/_cosO_

cosO_ - cosOi

cosOi + _cosO_

(7.16)
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arl(I by <h(,o4no., = t,, and c, = i_ follows tl,al l,Z_ /;l xt

angles, irlIplyinga perfectlymalcl,_.dmalerial iI1_evfac'e.11xv_._.T ..,= _,-/ _'.II_'

reflected field for a metal-backed llniaxial laver is

IR(0,)I = e -2._t:''_°' (,.1,

where t is the thickness of the laver and 0, is the i)latw wave incidelwe angh'. Ih('

parameter ok is simi)ly the wavenumber in the absorber, t3asicallv, the t)r()l)Osc(l

metal backed uniaxial laver has a reflectivitv of -30 (IB if .:ttco.,O, = 0.275A or -

55dB if 3tco_O, = 0.SA. where A is the wavelength of the background material.

The reflection coefficient (7.17) can be reduced further by backing the laver with an

ABC rather than a PEC. However. the PEC backing is more attractive because it

eliminates altogether the integrals over the surfaces. Clearly. although the interface

is reflectionless, the finite thickness layer is not and this is also true for Barenger's

PML absorber.

Below we present a number of results which show the performance of the proposed

uniaxial absorbing layer as a function of the parameter 3, the laver thickness t and

frequency for the guided structures shown in Figure 7.3. We remark that for the

microstrip line it is necessary to let a2 = ¢_b(c_ -j_3) for the permittivity tensor

and a2 ----- #rb(O -- j,'3) for the permeability tensor, where ¢_b and /_b are the relative

constitutive parameters of the background material (i.e. the substrate).

7.4.2 Results

Rectangular Waveguide

Let us first consider the rectangular waveguide shown in fig. 7.3. The guide's cross-

section has dimensions 4.755cm x2.215cm and is chosen to propagate only the TElo

mode. It is excited by an electric probe at the left. and fig. 7.6 shows the mode field



strength inside the wax'e_uich' whiclL }kas },ectl Icrmillal¢'d }_\ a t,'dccllv zl_a_cllcd

uniaxial laver..-\s expected, lhe field decay inskIe the al)_of ,or i_ cxl)t,llclllial all¢I

for ._ values less than unilv the wave does nol haw' sufli(ieI_/ <]¢,cax I_ ._lZl_l_I¢'>_

reflections from the metal backing of this 5cm laver. ('onsequenll.v. a \'S\\[_ of

about 1.1 is observed for 3 = 0.5. However. as 3 is increased 1o unilv, lhe \'._\\'l{

is nearly 1.0 and the wave decay is precisely given by (-_t.t_o,_, = t'JE;_"_'l', where

t is the wave travel distance measured from the absorber interface. [_ = 2.]//Aj and

here 0i = 44.5 °. It is noted that when 3 is increased to larger values, the rapid

decav is seen to cause unacceptable VS\¥R's. One is therefore prompled to look

for an optimum decay factor for a given absorber thickness and fig. 7.7 provides a

plot of the TElo mode reflection coefficient as a function of 231/Ag. where we chose

to normalize with respect to the guided wavelength A,. Figure 7.7 is typical of the

absorber performance and demonstrates its broadband nature and the existence of

an optimum value of D for minimizing the reflection coefficient. Basically, the results

suggest that B must be chosen for a given absorber thickness to provide the slowest

decay without causing reflections from the absorber backing. That is, the lowest

reflection may be achieved when the entire absorber width is used to reduce the

wave amplitude before it reaches the absorber's backing. As expected, this optimum

value of B changes with frequency but the broadband properties of the absorber are

still maintained since acceptable low reflections can still be achieved for unoptimized

/3 values. For example, in the case of f = 4.5GHz (dashed line) the optimum value of

/3 = 1 gives a reflection coefficient of-45dB whereas the value of _3 = 3 (corresponding

to 2/dt/Ag = 2.3) gives a reflection coefficient of -37 dB which is still acceptable for

many applications. It should be noted though that setting 3 = 3 allows use of an

absorber which is about 2era or 1/3 free space wavelengths. Also. as can be realized



the di_,cretizationrate pla.v.-a rob, in [inding lh_'ot_lil_lll_ll \illm't_f 4t ,\. _l_! t}ll>

the presented curve: refer to a s_mpling role of aroultd 1> ,\. f_,r _]m _v_x_,_li,t,,

example.

Not surprisingly (see (6.6)). for this example, the value of ¢_ does not play all

important role in the performance of the absorber and this is demonstraled ill [ig. 7.>.

As seen. setting always o = '3 gives the same performance as the case of _ = 1 stlowll

in fig. 7.7. Our tests also show that other choices of o give the similar al>orl)cr

performance. However. it is expected that o will play a role in lhe ])reseIic_' _,f

attenuating modes and it is therefore recommended to choose o = .3 to ensure I llal

all modes are absorbed.

Mierostrip line

The performance of the perfectly matched uniaxial laver in absorbing the shielded

microstrip line mode is illustrated in fig. 7.9 where the reflection coefficient is plolled

as a function of 2/3t/kg, where Ag = A0/ex/g777_H and e_:l is the effective dielectric

constant. In this case. the microstrip line is terminated with a 1.87 cm thick..5

layered absorber and the line is extended up to 4 layers inside the absorber to avoid

an electric contact with the metallic wall. Similarly to the waveguide, we again

observe that an optimum /3 value exists and it was verified that in the absorber

the wave exhibits the same attenuation behavior as shown in fig. 7.6. The reflection

coefficient at the optimum/3 = 1 is now -42dB and if better performance is required.

a thicker absorbing laver may be required. Again as in the case of the waveguide

example, the value of o plays little role in the performance of the absorber and this

is illustrated in fig. 7.10. However, of importance is the behavior of the reflection

coefficient as a function of 2/3t/A 9. For the waveguide and microstrip examples, we

observe that the absorption is maximized for approximately the same value of 2::¢1/A::
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il should be noted thal the discrclizalioli rate t_la\.-an ¢,qu_ll\ iIlll_¢wl.tlt rL_h'aI_,l

this needsfurther investigation.

"l-heaccuracyand validity of the PNIL applications for circuit parameter(oultm-

rations can also be seen from the resuh illustrated in fig. 7.11, lI is seen that usc

of the optimized 4.5 cm PML layer, with o = 1 and ,t = 1. yields very accurale

input impedance values. The shown microstrip line impedances were conlputcd _v

measuring the vertical field at the probe's location without a need to extract tlw

VSWR which is often difficult with unstructured finite element meshes. Note that

the shielded microstrip line dimensions for the data are given in fig. 7.11.

Meanderline

Another example is the meander line shown in fig. 7,12. For the FEM simulation.

the structure was placed in a rectangular cavity of size 5.8mm × 18.0mm × 3.175ram.

The cavity was tessellated using 29 × 150 × 5 edges and only 150 edges were used

along the y-axis. The domain was terminated with a 10 layer PML. each laver being

of thickness t = 0.12ram. The $11 results are shown in fig 7.13 and are in good

agreement with the measured data [78].
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AWE:

CHAPTER VIII

Asymptotic Waveform Evaluation

8.1 Brief Overview of AWE

Although full wave electromagnetic systems are large and cumbersome to solve.

typically only a few parameters are needed bv the designer or analyst. A reduced or-

der modeling of these parameters (input impedance, S parameters, far field pattern.

etc) is therefore an important consideration in minimizing the CPU requirements

needed for generating the frequency response of the parameter. The Asymptotic

Waveform Evaluation(AWE) method is one approach to construct a reduced order-

ing model of the input impedance or other useful electromagnetic parameters. AWE

relies on a Pad;_ approximation of the given parameters to avoid the repeated solution

of the system at each frequency value. It has already been applied to problems in cir-

cuit analysis and in this paper we demonstrate its application and validity when used

in conjunction with the finite element method to simulate full wave electromagnetic

problems.

The method of Asymptotic Waveform Evaluation (AWE) is a reduced-order mod-

eling of a linear system and has already been successfully used in VLSI and cir-

cuit analysis to approximate the transfer function associated with a given sel of

ports/variables in circuit networks [79-$2]. The basic idea of the method is to de-

133
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w'loI_ an apt_roximale Iraxl.'.fer fultctiorl of a _ivct_ tim'al ".X>1_'lll fr_I11 a lirl_il,'_l _._q _,f

SlWclral solutions. Typically. a Pa_lb ext)ansioi_ of lh_' trarl,.fl'r fui_clit,ll i- l,_,.lul,,l,'d

whose coefficients are lhell deternlined I_v ll_atclli_lg t l,_' t'adi' r_'l_r_'-¢'lltalioI_ _lll_'

available spectral solutions of the complete svs_en_.

In this chapter we investigate the applicability of the AWE nwthod for" apt)rox-

imating the response of a given parameter in full wave simulation of radiation or

scattering problems in electromagnetics. Of particular interest is to use A\VE for

evaluating the input impedance of the antenna over an entire bandwidth from a

knowledge of the full wave solution at a few (even a single) frequency points. Also.

the method can be used to fill-in a backscattering pattern with respect to frequency

from a priori knowledge of the simulation system with a few data samples of that pat-

tern. Given that practical partial differential equation(PDE) systems involve several

thousand unknowns, AWE can indeed have a dramatic reduction of CPU require-

ments in generating a response for a given system parameter (state variable) without

a need to resolve the system for the fields in the entire computational grid. Below we

first describe the recasting of the FEM system for application of the AWE. We then

proceed to describe the AWE method and demonstrate its application, accuracy and

efficiency for computing the input impedance of a shielded microstrip stub.

8.2 Theory

8.2.1 FEM System Recast

The application of the finite element method to full wave electromagnetic solu-

tions amounts to generating a linear system of equations by extremizing the func-

tional [83]

_'=<VxE,_.VxE>-k2<E._.E>+kb.t. (8.1)



135

wher*' <.> denole_all illllei-producl and b.t. i: a l>t,-_il,h'I>tmn,iar\ _,'liI_ x',},_,,,'

specific forlli is not required for thi, discussion. :\1_<,. lilt" dxadic_ 7-7aiid 7 ar,' ilialt.-

rim related coefficienls. A" is the wa\etlllllliil'r ali(l _' ib l lie (t>l'rl'>l/t>llttill_
,k c

operaling frequelicy with c being the speed of lighi. A discr<'tized [c)rni <if tS.l)

incorporating the appropriate boundary conditions is [29]

(A0 +/,'A, +/,'2A:) {.\'} = {./} (S.2)

where A, denote the usual square (sparse) matrices and {f} is a column matrix

describing the specific excitation.

Clearly (8.2) can be solved using direct or iterative methods for a given value of

the wavenumber. Even though A, is sparse, the solution of the system (8.2) is com-

putationally intensive and must be further repeated for each k to obtain a frequency

response. Also, certain analyses and designs may require both temporal and fl'e-

quency responses placing additional computational burdens and a repeated solution

of (8.2) is not an efficient approach in generating these responses. An application of

AWE to achieve an approximation to these responses is an attractive alternative and

below we formulate AWE in connection with the FEM system (8.2), whose imple-

mentation is considered in connection with antenna and microwave circuit problem.

For these problems it turns out that the excitation column {.f} is a linear function

of the wavenumber and can therefore be stated as

{f} = k {.f,} (8.3)

with {fl} being independent of frequency. This observation will be specifically used

in our subsequent presentation.



8.2.2 Asymptotic %Vaveform Evaluation

To describethe basic ideaof \\VE ixl conjuIjctk_ll will, IIw l:t_._l, v,_. t,_',2ili t,_

first expanding Ill(, solution {.\'} in a "Ia\-l_)r :('ri('- al)olLt /,_, a>

{.\} = 1-\0} + (_-- t0){-\, } + (L.- _-0_:{.\:} +..

+(_-- _.o)_{.\,} + o {(L.- _.o)'+' (_..I j

where {-\'0} is the solution of (8.2) corresponding to the wavenuml_er/,'u. By intro-

ducing this expansion into (8.2) and equating equal powers of/,' in conjunction with

(8.3). after some manipulations we find that

{Xo}

{X,}

{x_}

{x,}

= koA, o'{f,}

= Ao I [{/,} - A, {Xo} - 2koA2 {Xo}]

= -Ao' [A, {X,} + A2({Xo} + 2ko {X,})]

- --&-o' [A, {X,_, } + A2({X,_2} + 2ko {.\',__ })]

(s..5)

with

_2-&-o= Ao + ]goAl 4- koA2 (s.G)

Expressions (8.5) are referred to as the system moments whereas (8.6) is the

system at the prescribed wavenumber (k0). Although an explicit inversion of Ao _

may be needed as indicated in (8.5), this inversion is used repeatedly and can thus

be stored out-of-core for the implementation of AWE. Also, given that for input

impedance computations we are typically interested in the field value at one location

of the computational domain, only a single entry of {X_(k)} needs be considered, say

(the pth entry) .\'f(/,'). The above moments can then be reduced to scalar form and
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the expansion:- (_.5i h_+come e_scalar r,_'pre_c'nt at i_;ttof .\';+ k +at,,.,tzt tits. _,.,rr_-..t,,,¢_,iit_,..:

so]ution at k0. "Io \ie[d a Illore convergciit cxl)r(,ssiolL, wc carl ilt>tt,at] rcvctt I[_,

moments to a Pad/_ expansion, which is a conx('nliotLal raliutlal t'utlcliotl itl fotnt. :\

special case of the qlh order of such an expansiotl is gi\etL hv

ao + at(k - ],'o) + a2(k - t'o) _ + ... + a,_(t - t'_t "_

.¥;'(k) = 1 -4--b,(k - k0) + b2(k - k0) 2 + ... + b_(]," - k¢,)_ (_.T)

where a, and b+ (i = 0.1 ..... q) are referred to as the Padb coefficients.

For transient analysis, it is observed that the Padb expansion can t>c rcfortnltlalcd

by partial fraction decomposition [82.84] as

q

= x+ 0+ t+- t-o- t-, (s.s)
i=l

where Xq0 is the limiting value when k tends to infinity. Clearh. this is the represen-

tation suitable for time/frequency domain transformation. The residues aim poles

(r, and ko + hi) in (8.7) or (8.8) correspond to those of the original physical system

and play important roles in determining the accuracv of the approximation. In gen-

eral, higher order expansion contains more system residues and poles and usually

provides a better approximation. Since the accuracy of AWE relies on the dominant

residues and poles located in a complex plane closest to the point on the real axis

k0 from the origin, in practice the number of poles (and residues) needed to obtain

a sufficiently accurate expansion can be much smaller than that of the original nu-

merical svstem, which is the beauty of AWE method. (Detailed analysis and theory

of Pad6 expansion can be found for instance in [85].)

For hybrid finite element - boundary integral system, the implementation of

AWE is more involved because the full}- populated submatrix of the overall system

mav be associated with a more complex dependence on frequency. In this case it is

attractive to instead generate the full submatrix by introducing a spectral expatlsiotl



of the exponenlia] boundary inte_ral k¢'rlwlt<,facililat,' *h,' _'x_1a,_i,,l,<,1I_1,'-x-t,.l_

nloments. lhi> approach does increaselhv conlt,licalioI,> f<,t in_t,h'll,,'I:i1,'.:.\\VE

It howeverremainsfar rnore elCfici¢'nl in lernl> of ('l'l requirvlnenl.- _vlmn collltmTc<

to the conventional approach to continuous]v repealing the solulion of t]u' elixirs'

system.

8.3 Numerical hnplementation

As an application of A\VE to a full wave electromagnetic simulat ion. we consider

the evaluation of the input impedance for microstrip stub shielded in a metallic

rectangular cavity as shown in fig. 8.1. As expected, the stub's input impedance is

a strong function of frequency from 1-3 GHz and this example is therefore a good

demonstration of AWE's capability.

The shielded cavity is 2.38em x 6.00cr,_ × 1.06crn in size and the microstrip stub

resides on a 0.3.5cm thick substrate having a dielectric constant of 3.2. The stub is

0.79crn wide and A/2 long at about 1.8 GHz. We note that the cavity is terminated

at the perfectly electric conductor (PEC) back wall by' an artificial absorber having

relative constants of e_ = (3.2, -3.2) and #_ = (1.0. -1.0). In this study the artificial

absorber was used for setting up an appropriate forced problem rather than to es-

tablish a perfectly matched interface. Nevertheless the numerical FEM system was

alreadv demonstrated valid and accurate for microwave circuit analysis [86].

The frequency response of the shielded stub was first computed using a full wave

finite element code from 1 to 3 GHz at 40MHz intervals (50 points) to serve as the

reference solution. Vv'e then chose the single input impedance solution at 1.78GHz

in conjunction with the 4th order and 8th order AWE representation given in (8.8)

to approximate the reference response. As seen in fig. 8.3. the 4th order A\VE



C_'])Ie'_'IIt atioll i._ iT] /-ton!,_'enwtll ',_,il h t }if" r_'al al](] rt'a(1 i',,_' t_a_l - t_l ltnt, l_'[t'I,'[_( _' iTlt_llt

iml,edarwesolutiol] over about 5(;'; and 3:9_; t,al,duidtl,, r_'_.l,_'_ti\_'l_, li,i> ch._,rl\

shows that the contributions of llw system poles ill th,' c't,tl_l_l_'× 1, l,l_ttk,' h'_,_l _t, al_

accuracy difference to the real and reactiw'com]_olwnts. Surprisiligly. tlw _ltl ordor

AWE represent at ion recovers the reference solut loll over t_]e etlt ire I-:{(;]1/ baIld for

both impedance components. \",'e also observed that the ('])I requircnlent,,, for-lt]_

and 8th order computations are near]y the same except for a low n_ozo times of

matrix-vector products. The number of these product operati(ms is ill the order of

the AWE approximation order q and therefore mnch smaller thaw the size of the

original numerical system.

It is also apparent that to demonstrate the A\VE efficiency we only solved the

system once at one frequency point. The save of CPU time can be easily estimated

when compared to so]re the system conventionally for each frequency over the entire

band. Thus, the AWE representation is an extreme])" useful addition to electro-

magnetic simulation codes and packages when a wideband frequency response of the

svstem is required. The development and utility of the method for more complex

numerical systems and multiple parameter simulation can be readily extended and

will be considered in the future.
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CHAPTER IX

Conclusions

9.1 Discussion on the Research Work

During the period of developing the hybrid finite element methods, many ex-

pected and unexpected issues were frequently encountered. Among them are tile

understanding of physical systems, development of mathematical models, interpre-

tation of results, lack of measurement data for comparison, and increased colnpu-

tational demands, etc. We can comfortably state that significant progress has been

made during the course of this work. Some of our accomplishments are summarized

below.

• GENERAL PURPOSE HYBRID FE-BI METHOD DEVELOPMENT

Once the FE and BI subsystems and the hybrid method were mathemati-

cally formulated, a major effort was then devoted to the integration of the

two subsystems. The interface between the FE-BI program and a commercial

(SDRC-IDEAS) mesh generator was developed with minimum but sufficient

geometry and meshing data. The latter task was important in permitting the

geometrical modeling and meshing of printed antenna configurations of arbi-

trary shape. It is this general version of the FE-BI code that can (in theory)

be used to simulate an 3 planar conformal antenna.
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• I"rI-:RA'rI\'ESYSTEMSOI.\'ER

A nmn,orvsaving algorithm I-I-PA('I'_was inte;twin,'d witiz t],," ltvt,_i,I tli_l

subsvslen_to regisler on]\ the non-zero FE.M entries. The l{i('(; itcrativ,.

solver was independentlydevelopedfor partially sparseand Imrtialt\ full n_a-

trices in conjunction with the ITPA('K algorithm.

• UNIFORMGRIDBI SUBSYSTEM-- BICG-FFT

To facilitate the efficient storageand evaluation of the BI sub-system,a uni-

form right triangular zoningschemefor discretization of the boundary integral

equation wasintroduced by re-numberingthe triangle edgesasdictated by their

geometricallocations. This approachleadsto a BI sub-systemwhich could be

cast asa 2-D discreteconvolution, thus allowing useof FFT for fast execution

of the iterative solver. This truncation/termination the "exact" evaluation of

rectangular and right-triangular patches:.

• NON-UNIFORMBI SUBSYSTEM-- OVERLAY-BICQ-FFT

For non-rectangularpatches,an interpolation schemewasproposedto makeuse

of the efficientBiCG-FFT techniqueby overlayinga fictitious uniform grid with

the original arbitrary mesh. The forward/backward transformation matrices

to account for field interpolations using localized basisfunctions were derived

and they wereindeedhighly sparse.

• FEED MODELING

Feedmodelingis oneof the most important and challengingtasksin the context

of the general purpose FEM. To this end, a seriesof commonly used feed

structuresweremodeledusingthe hybrid technique,especiallyin consideration

of efficiency and accuracy. These include probes/generators, aperture coupled
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slotline, microstrip line. coaxcal_lc,etc.

• PRISMATI("FE.M EI.EMENISINCORPOltATI()\

A major problem in any hybrid FE._I analysis i> tlm re(tit,us i_l,.-l)I_,(v,>il_.,.:

for meshgeneration. Thin laver substrates in the presenceof _hi(k spa('('l(sl

are often found in practical conformal antenna designs. However. this typical

configuration leads to large numerical systems when letrahedral elemenls are

used. To alleviate these difficulties, the prismatic edge-based elements were

developed and incorporated in the hybrid system. This formulation exhil)ils

certain features/advantages that tetrahedral FEM does not. It can therefore

be used to compensate the tetrahedral FEM as a subsystem module.

• MESH TRUNCATIONS _3,rlWH DMT AND PML

The uniaxial or other anisotropic medium simulation may be readily accom-

plished using the proposed hybrid FEM technique due to the geometrical adapt-

ability of the tetrahedral elements. Hence the PML was first introduced into

the 3-D FEM. Various performance studies were carried out to optimize the

application of the PML to microwave circuit simulations. In the meantime, an

analytical approach, dominant mode truncation (DMT), was proposed and im-

plemented as an alternative mesh truncation of the FEM domain for microstrip

lines and similar structures.

• REDUCED ORDER APPROXIMATION--Ate, rE

AWE has been reported useful in RLC and VLSI applications. For wideband

and highly varying frequency responses, this technique is particularly efficient.

Given the promise of the method for broadband simulations of VLSI circuits,

we consider its application to electromagnetic system. In particular. AWE
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9.2

was incorporated into lilt" finile elemelll mmhod. 11 wa> i_d,,¢'d ,,I,-,.r\,,,l tt_al

the air rac!ive feat ures of AWE are mainlained wh(,xl used in (,h,ct l'Olll_t°ll('| i("

problems.

Suggestions for Future Tasks

The following is a list of suggested tasks for further dexelot)mcnt of the tinile

element methods

• HIGHER ORDER EDGE-BASED FEM DEVELOPMENT

• ADAPTIVE ELEMENTS

• MIXED ELEMENTS AND INTERFACE

• ANISOTROPY (WITH LOSS) FEM INVESTIGATIONS/APPLICATIONS

• INCORPORATION OF MORE ROBUST TRUNCATIONS

• MODULAR DEVELOPMENT AND INTEGRATION (WITH USER INTERFACE)

9.3 Modular Development

Hybrid finite element methods for the analysis of various electromagnetic prob-

lems encountered in practice are still on the way to reach its maturity. As well known,

any general purpose technique (such as the commercially available software in electro-

magnetics) either loses its efficiency or becomes incapable when simulating intricate

problems. It is anticipated that at the current stage of the FEM development with

the limited capacity of computing resources, more and more specialized techniques

will be desired, particularly when efficiency and speed become a key consideration

in large scale computations and in engineering design.
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With a whole ._'I of ._peciMly developed l_'dlI,iqm'> and nwt la,&,l_,_i_'>. _,***'>l,_,,lld

then consider to creale an imegrat ion enviro,mwm. A_ .-hown in tig. _. t. wc pi,_l,_,._.

this FEM modular environment for fulure coml)utalional _'l('c'1 romagm'1 ic al_l_lica-

tions. A well designed modular finite element met hods will be the inosl cal)al,h' alld

robust in the future!
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Figure 9.1: Multi-modular FEM environment
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APPENDIX A

Evaluation of Matrix Elements for Tetrahedrals

Referring to Fig. A.1 and the associated table, the fields in the _th letral_edron

2

3

nodes/vertices

(a)

Table

Edge

Numbering il

® 1
® 1
@ 1
® 2
@ 4
® 3

Vertex Numbering

i2

2

3

4

3

2

4

(b)

Figure A.I: (a) A tetrahedron. (b) its local node/edge numbering scheme



are expanded as

E = _ Cw;

where the basis functions V_*I are given by

W_-_,(r)

g7_2 ---

I fT- i0

bT-i

61_ r,_ × r, 2

b,br_,
-- ei

(r,_ - ri, )

b,

+gr-, >:r rCl_

outside element

r, 1. r, 2 • position vectors of vertices il and i, (s<'c "lal,h,)

]r, 2 - ri_] = length of the ith edge (see Table)

I/_ = element's volume

We note that

V.W_ =0 V" x W_ = 2gi

indicating that W_ are divergenceless. Furthermore,

w_(1J) •_, = _/

(

) 1 i=j

0 i¢j

elements Ai_. We have

/f/ Z(v
4

x W_) • (V x W_)= --g, • g iI_

where r j has its tip on the jth edge of the tetrahedron. This last property ensures

that the coefficients E/_ = E • _i represent the average field value at the ith edge of

the tetrahedron.

Using the above basis functions, we now proceed with the derivation of the matrix



.-\ ]so.

j w:-w; a,.
"p

= (_(I_ + 12 + 1::)

r_-tg r!} di

where

and

D=(f, ×gj)+(fj x g,)

Ii = ffj f,.f,d,'

12 = j j/ r. Ddc

/3 = j// (g, × r)-(gj × r)dt'

Since f is a constant vector, 11 reduces to

11 = f,-fj I,';

To evaluate 12 we first, set,

4 4 4

i=1 i=1 i=1

where xi, 9i, zi (i = 1,... ,4) denote the (z,y,z) coordinates of the tetrahedron's

vertices and Li are the simplex coordinates or shape functions for the same element.

That is, Li is the normalized volume of the tetrahedron formed by its three corners

other than the ith, and the point (z,y,z) located within the tetrahedron. Using the

standard formula for volume integration within a tetrahedral element and simplifying,

we have

12 = T Dx xi + D v y, + D: z,
i=1 i=1 i=1



w}lr,re /]., is l}w 11_Ih (ompolwlil of D. "lh_" m alu_,lh,z_ _,f/, ca1_ I., >ilIIt,lili,',t 1,_ it_,,

use of basic vector identities. \% t_ave

13 g, ' g_ f ]rlZ dc - j (g, ' rt(gj " r)ch '

_:,,,.
'< . , . .

where gim represents the 771th component of the vector g,. Each of l}le al>o\e inl¢>gial>

can be easih evaluated analytically and the restllt can be expressed in lhe general

form

for l,m = 1,...,3.

variables x, y, z.

ala,_ dv = 20 al, a_i + Oh ami
"e i=1 I=l /=1

The parameters at or a._ can represent any of the rectilinear
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APPENDIX B

Evaluation of the Boundary Integral System

Matrix

The explicit representation of the boundary integral subsystem matrix is given

by (3.12) and can be rewritten as

Bpqi'=2/fr /fr (-k_Si.S,+VxS,.V×Sj)Go(r.r')dF,'dS (B.1)

where G0(r,r') is tile free space Green's function, and T,p is the pth triangle of the

triangle pair 5'p as shown in fig. 3.3. Similar to the finite element assembly procedure.

it should be recognized that the definition of (B.1) virtually involves an assembling

over the triangles.

To proceed, (3.14) is used to discritize the field region and thus its curl is given

by

x Si(r) = e(r)A/--_'_p5 (B.2)

where e(r) is defined by' (3.15). Note that when deriving (B.2), the fact that r is

located inside the pth triangle in a planar surface is considered and therefore V.r = 2.

Given the Green's function, it is straightforward to express the matrix entries as

_ _:gUj // //(r-r,').(_-r;)_,(r)_:( _-jkoR
JA, bTrAp.4q ] r) _ dS' dS

+ '2_r' p q _i(r)%(r) q' _'
.4 i .4j _ R

(B.3)
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in which B' = ir - r'i. Tl,_,se integral> tax1 I,e readilv _'valtlat_'_l R,v ta,Ii -elf ct,ll

terms bv numerical integrations. ]I i> also ot,,er\ed t]_at t,i_c_' "I': ct_ilwid_'- witIi

Tf . the integrands become singular because of the Green'.,, fulwtioil. Iii thi- ca_c.

the singularity should be removed. For the second inlegral, lhi.- is accoi_lpli>[,,d lw

subtracting and adding an additional term. That is

/_T, /_T £ - ) ko R, ; --_,(r)%(r) dS' dS' = If. /ITe-jk_n-l_'(r)_J(r)dS''d>',,_ H
)

+ -_,(r)_(r)dS"dS' (B.-t)

The first integral in (B.4) is evaluated using numerical integrations and the second

one is carried out analytically [55]. Similarly, the first integral in (B.3) is rearranged

as

ff: f: (r-
e-jkoR

r'i). (r - rj)G(r)o(r)_ dS'd_ =
1

/fT_fLq (r-r'i)'(r-r'J)ei(r)ej(r)e-jk°R-lR

+ (r -- r'i). (r - rj)G(r)ej(r)_ dS' d_q (B.5)

dS' dS;

in which the first integral on the right hand side is numerically integratable with

singularity removed and the second one again may be expressed in a simple analytical

form [55].



15 1

APPENDIX C

Formulation for Right Angle Prisms

For FEM implementation, the following quantities are required

P_ = _,,V×V_.V×V_dI"

where the curls are given by

li

v × v, - 2_'_: [(* - *+)_+ (y - >)9 - z(: - :c)] i = 1,_.a

li

v×v, -2s_ [(.-xj)_+(y_yj)9+_(:_+A:_:)] j=4.5.6 (c.3)
1

v x vk = 2S--g[(xk_ - zk_)2 + (yk2 - yk_)9] k = 7, s, 9

To this end, we follow the notation defined in (4.13) and (4.14), where i.i'=1.2.3

represent the top triangle edges, j,j'=4,5,6 denote the bottom triangle edges and

k, k'=7,8,9 stand for the vertical three edges. It is found that (C.2) and (('.3) can

be analytically evaluated and we tabulate the results as follows

4-_(_:)_ 1 (('.4)Pii' = Cii, Dii,2__z q- 3 _

[ 4"_(A:)3] (C5)P#, = Cjj, Djj,A:+ a _



17"17)

..__2
tL._:, - ? . t_'

45'

t;: = P:, =-C,, l) .... (-_. (_x:_ :_

( ' _11

('._"

Pzk

k

= Pkz--

= Pkj--

z, [._-.?(_.v .r,:V_ ? >'_ '_"
4(_g"): - )+._" ( -'" )]

l; [_ i*(s'-v - ._,¢_)+ b. ?(."} - u;>_ )]

('.9

(('.10

(C.11

(___:)3
Qii, - C,i,Dii,

3

(A:) 3
QJJ' -- 3 ('j:,Djj,

(C.1_')

(c.la)

(c.]4)

Qkk'

Q,j

Qik

= AzS_Tkk,

QJi (_)3= -- Ci.i Dij

= Qk,=Qjk=Qkj=O

(C.15)

(C.16)

(C.17)

where

Tkk, = 1/6 fork=k'; 1/12 for kT/:k'

lilj
Cii :

4(S_Az) 2

D_j = _q.¥X - (x, + xj)SX + x,xj,_ + S}"}" - (yi + yj)5} + yiyj5

The remaining quantities in the above list of the expressions are defined as

(c.]s)

S_ = fs_ dxdy

SX = _ x dxdy



l')t,

.,4) = {,..q d,r d.q

?".\ .\" = _,, ,r 2 d.rd!/

.5'}) = Js- !t" drdg

.5'.\') = _,.rgd.rd!l

These integrals can be expressed in terms of the global coordinates of the three llodcs

('\", }; )" ('\'a" }J )" (-\'-,') _ )- Specifically. assuming thai the three llOd('s ],j all(l in of

a triangle are in counterclockwise rotation, we then have.

1S _ = dxdy =
e

1 a', y,

1 :ra Ya

l .r,_ y_

SX

SY

SXX

SYY

SXY"

= , z dxdv = y (X_ + Xj + .\'., )

= ° v &@ = T (); + U + _;_)

s "5'_ )2 .2= . ,_d_dy= _ {(x, + x, + xm + (.v_+ _v,_+ .,:.,)}

s ""q_ )2 - -2= o¢,_xdv= _ {(_ + __+ _:, + (_?+ V + _,,,)}

= jfs xydzdY=_2{(X, + xj + xm)(X + _; + Y_)

+ (x,}; + x,).; + x=_L)}
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APPENDIX D

System Derivation From A Functional

Referring to fig. 2.2. we begin with the functional

1 VxH.G-VxH-k2H'_,-H dft (D.1)
5r(H) = 2 d+a1+a,

to derive the system in terms of the scattered field. On inserting the field decompo-

sition H = H _cat + H inc, the functional becomes

5r(HSCat'HinC) = (HSC_t'H_t) ad+aj+n_--'--4-tN_cat' H,,,c) nd+( Hinc. Hscat) f_a

+ (H_t,H_nc) a, +(H'n_'H_at) a, (D.2)

where the fact that Hinc does not exist in f_ has been considered, and (,) represents

the integral of the same form as in (D.1). Once a self-adjoint system operator is

assumed, it then follows that

Also, in free space Q f,

(Hi'_' HS_t) a, = (H'_t' Hin_) nd (D.3)

(Hi'_c, H *c_t) nj= (H_at, Hi'_c)lnl (D.4)

Upon invoking the divergence theory, we have

( :-, )= H '_t- 5_ ×¢s "V×H i'_ dS
d

-- H scat" 52 × ( y " V × Hinc dfi'

l

(D.5)



I2vid('ntlv. for a _(,If-a¢ljoinT operator. _>))(.v('a(lilx r(',_,v('r_ _l,' >\-_('ll_, 2.12, ,)))tai),',l

via (;alerkiE)'s n,etl,od. II shoul<l l,e )a,ted )lla) l,'>id(,- )h(' l,_,tlmlar\ _rall>i)i,)))

c(,)iditions, the self-adjoinl property of a .-\slt,m Ol)(.rator >illll,]y r('(luirv>

In the case of a non-se]f-adjoint operator, it is generally not I)OSsil,]( , to r('('ox('r ilk('

system given by (:2.42) in the same manner. This is })ecause the functional (I).2) in

terms of the scattered field is of the form

?(H) = _ _+n:+no -_ • V × - _¢)..

+ _ V x .f,l-V x -"o*" 'Pd 'H"c df_
d

1 Jn ( Hin_ _:a H_, t b21_ii,,c._ HSCat) dQ+ _ Vx • .Vx - "o"" "
d

+ H "_'_t" _1 X _:: • V x H _''c dS
d

!

It is observed that the first integral shows the same form of the FEM system as that in

(2.42). All other integrals in (D.7) contribute to the system excitation. Apparently,

the two integrals over domain 9td are not identical, leading to a different FEM system

than (2.42).
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